CLÁUDIA ÂNGELA MAZIERO VOLPATO

INFLUÊNCIA DO TIPO DE SUBSTRATO E DA ESPESSURA DOS MATERIAIS CERÂMICOS (IPS-EMPRESS e IPS-EMPRESS 2) QUANTO AO COMPORTAMENTO ÓPTICO

Tese apresentada ao Programa de Pós-Graduação em Odontologia da Universidade Federal de Santa Catarina, como requisito para a obtenção do título de Doutor em Odontologia – Área de Concentração: Dentística

Orientador: Prof. Dr. Sylvio Monteiro Júnior

Co-orientador: Prof. Dr. Mauro Amaral Caldeira de Andrada

Florianópolis 2005

Livros Grátis

http://www.livrosgratis.com.br

Milhares de livros grátis para download.

Cláudia Ângela Maziero Volpato

"INFLUÊNCIA DO TIPO DE SUBSTRATO E DA ESPESSURA DOS MATERIAIS CERÂMICOS (IPS-EMPRESS e IPS-EMPRESS 2) QUANTO AO COMPORTAMENTO ÓPTICO."

Esta tese foi julgada adequada para obtenção do título de DOUTOR EM ODONTOLOGIA – ÁREA DE CONCENTRAÇÃO DENTÍSTICA e aprovada em sua forma final pelo Programa de Pós-Graduação em Odontologia.

Florianópolis, 01 de novembro de 2005.

Prof. Dr. Ricardo de Souza Vieira Coordenador do Programa de Pós-Graduação em Odontologia

BANCA EXAMINADORA

Prof. Dr. Sylvio Montei Orientador	ro Junior		aral Caldeira de Andrada entador
	Prof. Dr. G	Blauco Fioranelli Vieira Membro	_
	Prof. Dr.	Márcio Celso Fredel Membro	_
	Prof. Dr.	Luiz Narciso Baratieri	_

Membro

DADOS CURRICULARES

Cláudia Ângela Maziero Volpato

14430111C1110 23 4C 11141Q0 4C 1301	Nascimento	29 de março de 1967
-------------------------------------	------------	---------------------

Local: Lages / SC

Filiação Dorali Ângelo Maziero

	Neiva Stela Burati Maziero
1984-88	Graduação em Odontologia – UFSC / Florianópolis - SC
1991-93	Especialização em Prótese Dentária - AONP / Londrina - PR
1994-95	Estagiária das Disciplinas de Prótese Parcial
	UFSC / Florianópolis - SC
1995	Professora do Curso de Especialização em Prótese Dentária
	UFSC / Florianópolis - SC
1996-98	Professora Substituta das Disciplinas de Prótese Parcial
	UFSC / Florianópolis - SC
2000-01	Mestrado em Odontologia – Área de Concentração Implantodontia
	UFSC / Florianópolis - SC
2002	Professora das Disciplinas de Prótese Fixa I e II
	UNISUL / Tubarão - SC
2002	Professora das Disciplinas de Oclusão I e II
	UNISUL / Tubarão - SC
2004	Aluna do Programa de Pós-Graduação em Odontologia
	Nível Doutorado – Área de Concentração Dentística
	UFSC / Florianópolis - SC

DEUS PAI, obrigada por ter-me dado tanto. Espero ser sempre merecedora do seu amor e infinita bondade.

Aos meus FÁBIO e GUILHERME, companheiros e co-autores desta caminhada. Apesar das dificuldades, o amor e as renúncias foram responsáveis pela nossa vitória.

Dedico a vocês este trabalho.

Aos meus pais, DORALI e NEIVA, e a toda minha família; pelo amor incondicional, estímulo e apoio.

Divido com vocês, o mérito desta conquista.

AGRADECIMENTOS ESPECIAIS

Ao professor Dr. SYLVIO MONTEIRO JUNIOR, que me recebeu com alegria, e por todos os dias deste percurso manteve acesa a minha esperança. Sem dúvida, tê-lo como orientador foi o maior presente que recebi neste Curso.

Ao professor Dr. MAURO AMARAL CALDEIRA DE ANDRADA, pelo exemplo de vida, competência profissional, dedicação e incentivo na participação da minha formação.

Ao professor Dr. LUIZ NARCISO BARATIERI, pela sua maturidade, clareza e sabedoria, que foram responsáveis pelas profundas mudanças na minha vida profissional e pessoal.

Ao professor Dr. ÉLITO ARAÚJO, pelo exemplo de seriedade e dedicação; agradeço-lhe a oportunidade que me foi dada.

Ao professor Dr. LUIZ CLOVIS CARDOSO VIEIRA, por todos os ensinamentos transmitidos, sempre com carinho e dedicação.

Ao professor Dr. IZO MILTON ZANI, pela certeza de que um dia este sonho seria realizado.

Ao professor Dr. MÁRCIO CELSO FREDEL, pela amizade e apoio incondicional, mesmo quando nossas diferentes áreas de atuação pareciam tão distantes.

À professora LIENE CAMPOS, por tudo... carinho, disponibilidade e serenidade, que sempre estiveram presentes no nosso convívio.

A todos os colegas de Curso, especialmente à LIZETTE, MARY, NAUDY e SAULO, que souberam trocar experiências e principalmente superar e aprender com as nossas diferenças.

AGRADECIMENTOS

À UNIVERSIDADE FEDERAL DE SANTA CATARINA, por ter-nos proporcionado a oportunidade de aprendizado, oferecendo estrutura física e corpo docente qualificado.

Aos professores Dr. RICARDO DE SOUZA VIEIRA e MAURO AMARAL CALDEIRA DE ANDRADA, coordenadores do Programa de Pós-Graduação em Odontologia durante o período deste Curso, pela dedicação com que exerceram suas funções.

Ao corpo docente do Programa de Pós-Graduação em Odontologia – Área de concentração Dentística, meu agradecimento pela experiência acadêmica e científica.

Ao CNPQ e a CAPES, pelo apoio para a realização dos cursos de Pós-Graduação no Brasil e em especial pelo auxílio ao nosso Programa.

Ao LABORATÓRIO DE PROCESSAMENTO MINERAL (LAPROM) da UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL, através do professor Dr. CARLOS PETTER e do bolsista EVANDRO LINO BATISTON, onde tive a oportunidade de realizar a parte experimental desta pesquisa e conhecer mais profundamente o tema deste trabalho.

Ao professor GLAUCO FIORANELLI VIEIRA, pelos importantes esclarecimentos sobre a parte experimental desta pesquisa.

Ao professor FERNANDO CABRAL, pela análise estatística dos resultados.

À professora e amiga JOSIMARI LACERDA, pelo auxílio na compreensão dos resultados.

Ao técnico WILSON CAVALHEIRO, pela amizade e execução dos discos metálicos utilizados neste trabalho.

Ao técnico SÉRGIO ARAÚJO e toda a sua equipe, pela disponibilidade e execução dos discos cerâmicos utilizados nesta pesquisa.

Aos funcionários da Disciplina de Dentística e Clínica Integrada, especialmente à Sra. LÉA, ao RICHARD e à Sra. THALITA, pelo apoio durante todas as etapas deste Curso.

Aos funcionários da BIBLIOTECA SETORIAL DE ODONTOLOGIA da UFSC, pela atenção na busca do material literário.

Aos funcionários da COORDENADORIA DE PÓS-GRADUAÇÃO, pelo carinho e solicitude no atendimento.

Aos professores e funcionários da Universidade do Sul de Santa Catarina (UNISUL), pelo entendimento e amizade durante este percurso.

À FERNANDA, com muito carinho, por toda a sua ajuda.

À PATRÍCIA, pelas trocas e constante amizade.

A todos que, direta ou indiretamente, me auxiliaram na elaboração deste trabalho.

"Quando amamos e acreditamos em algo do fundo de nossa alma, nos sentimos mais fortes do que o mundo, e somos tomados por uma serenidade que vem da certeza de que nada poderá vencer a nossa fé. É esta força estranha que faz com que sempre tomemos a decisão certa, na hora exata, e, quando atingimos o nosso objetivo, ficamos surpresos com a nossa própria capacidade."

VOLPATO, C. A. M. Influência do tipo de substrato e da espessura dos materiais cerâmicos (IPS-Empress e IPS-Empress 2) quanto ao comportamento óptico. 2005. 188f. Tese (Doutorado) - Programa de Pós-Graduação em Odontologia, Universidade Federal de Santa Catarina, Florianópolis.

RESUMO

Através deste estudo avaliou-se instrumentalmente a influência do tipo de substrato e de diferentes espessuras de materiais cerâmicos quanto ao comportamento óptico. Discos em resina composta, liga prata-paládio acabada e polida e liga de ouro tipo IV acabada e polida foram utilizados como substratos. Discos de cerâmicas foram obtidos nos sistemas IPS-Empress (técnica de maquiagem) e IPS-Empress2 (técnica estratificada) em 3 espessuras distintas (1,5; 2.0 e 2.5mm). Os discos cerâmicos foram associados aos substratos citados e um espectrofotômetro de esfera de integração foi utilizado para mensurar as coordenadas L* a* b*. As médias das coordenadas obtidas foram comparadas com as médias-padrão das cerâmicas testadas nas espessuras preconizadas pelo fabricante, resultando nas diferenças de cor entre estas comparações. Análise de variância a dois fatores (p<0,05) foi realizada para cada cerâmica testada, considerando as diferenças de cor (?E), luminosidade (?L*), e cor das coordenadas de cromaticidade a* e b* (?a* e ?b*). Os resultados demonstraram diferenças estatísticas em todas as condições testadas para as duas cerâmicas, sugerindo que, durante a escolha de um sistema cerâmico, tanto o substrato como a espessura de material cerâmico devem ser considerados, principalmente nos sistemas restauradores sem infra-estrutura cerâmica.

Palavras-chave: Cor. Cerâmica. Espectrofotômetros.

VOLPATO, C. A. M. Influência do tipo de substrato e da espessura dos materiais cerâmicos (IPS-Empress e IPS-Empress 2) quanto ao comportamento óptico. 2005. 188f. Tese (Doutorado) - Programa de Pós-Graduação em Odontologia, Universidade Federal de Santa Catarina, Florianópolis.

ABSTRACT

The purpose of this study was to evaluate instrumentally the influence of the substrate type and of different thicknesses of ceramic materials on the optical behavior. Composite resin disks, finished and polished silver-palladium alloy disks, and finished and polished type IV gold alloy disks were used as substrates. It was obtained ceramic disks in three different thicknesses (1.5, 2.0, and 2.5 mm) from the IPS-Empress (staining technique) and IPS-Empress 2 (layering technique) systems. The ceramic disks were associated to the aforementioned substrates and a spectrophotometer with integration sphere was used to measure the coordinates L* a* b*. Means of coordinates obtained were compared with standard means of ceramic systems tested according to the thicknesses specified by manufactures, resulting in differences of color between these comparisons. A two-way ANOVA (P<0.05) was applied for each ceramic system tested, with regard to color differences (?E), brightness (?L*), and color of coordinates of chromaticity a* and b* (?a* and ?b*). The results demonstrated statistical differences in all conditions tested for both two ceramic systems, demonstrating that during the selection of a ceramic system, both substrate and thickness of a ceramic material must be considered important, mainly in the restorative systems with no ceramic framework.

Keywords: Color. Ceramic. Spectrophotometers.

LISTA DE FIGURAS

Figura 1 – Curvas espectrais das cores
Figura 2 – Comportamento da luz em um objeto transparente
Figura 3 – Comportamento da luz em um objeto translúcido
Figura 4 – Comportamento da luz em um objeto opaco
Figura 5 – Estrutura da retina humana4
Figura 6 – Matizes azul, amarelo, vermelho e verde
Figura 7 – Saturações do matiz vermelho
Figura 8 – Valores ou intensidades luminosas das saturações apresentadas na
FIG. 744
Figura 9 – Sistema CIEL* a* b*45
Figura 10 – Matriz metálica75
Figura 11 – Detalhe da abertura central75
Figura 12 – Inserção da resina composta
Figura 13 – Condensação da resina composta
Figura 14 – Fotopolimerização da primeira camada de resina 76
Figura 15 – Nova inserção e condensação de resina composta
Figura 16 – Alisamento da última camada 76
Figura 17 – Lâmina de vidro utilizada durante a segunda fotopolimerização
Figura 18 – Excessos removidos 77

Figura 19 – Disco obtido	77
Figura 20 – Medição do disco com um micrômetro	78
Figura 21 – Disco de resina (S1)	78
Figura 22 – Discos em cera	80
Figura 23 – Discos montados em base de silicone	. 80
Figura 24 – Anel de silicone posicionado	. 80
Figura 25 – Anel preenchido por revestimento	80
Figura 26 – Fundição realizada em liga de prata-paládio	. 80
Figura 27 – Discos obtidos após o corte	. 80
Figura 28 – Disco de prata-paládio acabado (S2)	81
Figura 29 – Disco de prata-paládio acabado e polido (S3)	81
Figura 30 – Disco de liga de ouro tipo IV acabado (S4)	82
Figura 31 – Disco de liga de ouro tipo IV acabado e polido (S5)	82
Figura 32 – Discos montados no anel de injeção do sistema IPS-Empress	. 85
Figura 33 – Preenchimento com revestimento refratário	. 85
Figura 34 – Anel preenchido por revestimento	85
Figura 35 – Pastilhas de IPS-Empress na cor TC1	86
Figura 36 – Pré-aquecimento das pastilhas em forno de eliminação de cera	86
Figura 37 – Forno de injeção do sistema IPS-Empress	. 86
Figura 38 – Maquiagem dos discos de IPS-Empress	. 86
Figura 39 - Discos de cerâmica IPS-Empress nas espessuras de 1,5mm (0	C1);
2,0mm (C2) e 2,5mm (C3)	88
Figura 40 – Esquema de um disco obtido pela técnica estratificada	. 89
Figura 41 – Aplicação da cerâmica de cobertura Eris para E2	91

Figura 42 - Discos de cerâmica IPS-Empress2 nas espessuras de 1,5mm (C4	1);
2,0mm (C5) e 2,5mm (C6)	91
Figura 43 – Efeito <i>edge-loss</i>	96
Figura 44 – Espectrofotômetro Minolta CM 2600D, Japão	97
Figura 45 – Teste instrumental	97

LISTA DE TABELAS

Tabela 1 - Mensurações e médias do substrato resina (S1)
Tabela 2 - Cálculo do ? S (S1)164
Tabela 3 - Mensurações e médias do substrato prata-paládio acabado
(S2)101
Tabela 4 - Cálculo do ? S (S2)164
Tabela 5 - Mensurações e médias do substrato prata-paládio acabado e polido
(S3)102
Tabela 6 - Cálculo do ? S (S3)164
Tabela 7 - Mensurações e médias do substrato liga de ouro tipo IV acabado
(S4)102
Tabela 8 - Cálculo do ? S (S4)165
Tabela 9 - Mensurações e médias do substrato liga de ouro tipo IV acabado e polido
(S5)103
Tabela 10 - Cálculo do ? S (S5)165
Tabela 11 - Valores das cinco mensurações para os discos C1a166
Tabela 12 - Valores das cinco mensurações para os discos C1b166
Tabela 13 - Valores das cinco mensurações para os discos C1c166
Tabela 14 - Valores das cinco mensurações para os discos C1d166
Tabela 15 - Valores das cinco mensurações para os discos C1e166
Tabela 16 - Médias dos cinco discos e médias-padrão da cerâmica IPS-Empress
com espessura de 1,5mm (C1)104
Tabela 17 - Valores das cinco mensurações para os discos C4a

Tabela	18 - \	Val	ores das	cinco	mensu	ırações para os	discos	6 C4	b	167
Tabela	19 - \	Val	ores das	cinco	mensu	rações para os	discos	C4	C	167
Tabela	20 - \	Val	ores das	cinco	mensu	ırações para os	discos	6 C4	d	167
Tabela	21 - \	Val	ores das	cinco	mensu	ırações para os	discos	S C5	e	167
Tabela :	22 -	Mé	dias dos	cinco	discos	e médias-padr	ão da	cerâ	mica IPS-Emp	ress2 +
Eris na	espe	essi	ura de 1,5	īmm ((C4)					104
Tabela	23	-	Valores	das	cinco	mensurações	para	as	associações	S1+C1
(a, b, c,	d, e))								168
Tabela	24	-	Valores	das	cinco	mensurações	para	as	associações	S1+C2
(a, b, c,	d, e))								168
Tabela	25	-	Valores	das	cinco	mensurações	para	as	associações	S1+C3
(a, b, c,	d, e))								169
Tabela	26	-	Valores	das	cinco	mensurações	para	as	associações	S1+C4
(a, b, c,	d, e))								169
Tabela	27	-	Valores	das	cinco	mensurações	para	as	associações	S1+C5
(a, b, c,	d, e))								170
Tabela	28	-	Valores	das	cinco	mensurações	para	as	associações	S1+C6
(a, b, c,	d, e))								170
Tabela :	29 - 1	Mé	dias L* a*	b* da	as asso	ciações com o	substra	ato r	esina (S1)	105
Tabela	30	-	Valores	das	cinco	mensurações	para	as	associações	S2+C1
(a, b, c,	d, e))								171
Tabela	31	-	Valores	das	cinco	mensurações	para	as	associações	S2+C2
(a, b, c,	d, e))								171
Tabela	32	-	Valores	das	cinco	mensurações	para	as	associações	S2+C3
(a, b, c,	d, e))								172
(α, ε, σ,	α, υ,									

Tabela 33 - Valores das cinco mensurações para as associações S2+C4
(a, b, c, d, e)172
Tabela 34 - Valores das cinco mensurações para as associações S2+C5
(a, b, c, d, e)173
Tabela 35 - Valores das cinco mensurações para as associações S2+C6
(a, b, c, d, e)173
Tabela 36 - Médias L* a* b* das associações com o substrato prata-paládio acabado
(S2)106
Tabela 37 - Valores das cinco mensurações para as associações S3+C1
(a, b, c, d, e)174
Tabela 38 - Valores das cinco mensurações para as associações S3+C2
(a, b, c, d, e)174
Tabela 39 - Valores das cinco mensurações para as associações S3+C3
(a, b, c, d, e)175
Tabela 40 - Valores das cinco mensurações para as associações S3+C4
(a, b, c, d, e)175
Tabela 41 - Valores das cinco mensurações para as associações S3+C5
(a, b, c, d, e)176
Tabela 42 - Valores das cinco mensurações para as associações S3+C6
(a, b, c, d, e)176
Tabela 43 - Médias L* a* b* das associações com o substrato prata-paládio acabado
e polido (S3)108
Tabela 44 - Valores das cinco mensurações para as associações S4+C1
(a, b, c, d, e)177

Tabela	45	-	Valores	das	cinco	mensurações	para	as	associações	S4+C2
(a, b, c,	d, e)								177
Tabela	46	-	Valores	das	cinco	mensurações	para	as	associações	S4+C3
(a, b, c,	d, e)								178
Tabela	47	-	Valores	das	cinco	mensurações	para	as	associações	S4+C4
(a, b, c,	d, e)								178
Tabela	48	-	Valores	das	cinco	mensurações	para	as	associações	S4+C5
(a, b, c,	d, e)								179
Tabela	49	-	Valores	das	cinco	mensurações	para	as	associações	S4+C6
(a, b, c,	d, e)								179
Tabela	50 –	Μé	édias L* a	a* b*	das ass	sociações com	o sub	strat	to liga de our	o tipo IV
acabad	o (S	1)								109
Tabela	51	-	Valores	das	cinco	mensurações	para	as	associações	S5+C1
(a, b, c,	d, e)								180
Tabela	52	-	Valores	das	cinco	mensurações	para	as	associações	S5+C2
(a, b, c,	d, e)								180
Tabela	53	-	Valores	das	cinco	mensurações	para	as	associações	S5+C3
(a, b, c,	d, e)								181
Tabela	54	-	Valores	das	cinco	mensurações	para	as	associações	S5+C4
(a, b, c,	d, e)								181
Tabela	55	-	Valores	das	cinco	mensurações	para	as	associações	S5+C5
(a, b, c,	d, e)								182
Tabela	56	-	Valores	das	cinco	mensurações	para	as	associações	S5+C6
(a, b, c,	d, e)								182

Tabela 57 - Médias L* a* b* das associações com o substrato liga de ouro tipo IV
acabado e polido (S5)110
Tabela 58 - Cálculo dos valores de ?E, ?L*, ?a*, ?b* para a cerâmica IPS-
Empress
Tabela 59 - Diferenças de cor (?E) obtidas para a cerâmica IPS-
Empress112
Tabela 60 - Diferenças de luminosidade (?L*) obtidas para a cerâmica IPS-
Empress113
Tabela 61 - Diferenças de cor da coordenada de cromaticidade a* (?a*) obtidas para
a cerâmica IPS-Empress114
Tabela 62 - Diferenças de cor da coordenada de cromaticidade b* (?b*) obtidas para
a cerâmica IPS-Empress115
Tabela 63 - Cálculo dos valores de ?E, ?L*, ?a*, ?b* para a cerâmica
IPS-Empress2 + Eris186
Tabela 64 - Diferenças de cor (?E) obtidas para a cerâmica IPS-Empress2 +
Eris116
Tabela 65 - Diferenças de luminosidade (?L*) obtidas para a cerâmica IPS-
Empress2 + Eris117
Tabela 66 - Diferenças de cor da coordenada de cromaticidade a* (?a*) obtidas para
a cerâmica IPS-Empress2 + Eris118
Tabela 67 - Diferenças de cor da coordenada de cromaticidade b* (?b*) obtidas para
a cerâmica IPS-Empress2 + Eris119
Tabela 68 - Estatística descritiva (média, desvio-padrão) das diferenças de cor,
segundo espessura e substratos analisados para a cerâmica IPS-Empress121

Tabela 69 - Análise de variância das diferenças de cor, medidas em unidades de cor
(?E), segundo espessura e substrato para a cerâmica IPS-Empress121
Tabela 70 - Resultados das comparações múltiplas das diferenças de cor obtidas
com o teste LSD (p<0,05) para a variável espessura com IPS-Empress122
Tabela 71 - Resultados das comparações múltiplas das diferenças de cor obtidas
com o teste LSD (p<0,05) para a variável substrato com IPS-Empress122
Tabela 72 - Resultados das comparações múltiplas das diferenças de cor obtidas
com o teste LSD (p<0,05) para as interações entre espessura X substrato com
IPS-Empress123
Tabela 73 - Estatística descritiva (média, desvio-padrão) das diferenças de
luminosidade, segundo espessura e substratos analisados para a cerâmica
IPS-Empress124
Tabela 74 - Análise de variância das diferenças de luminosidade (?L*), segundo
espessura e substrato para a cerâmica IPS-Empress125
Tabela 75 - Resultados das comparações múltiplas das diferenças de luminosidade
obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress125
Tabela 76 - Resultados das comparações múltiplas das diferenças de luminosidade
obtidas com o teste LSD (p<0,05) para a variável substrato com IPS-Empress 126
Tabela 77 - Resultados das comparações múltiplas das diferenças de luminosidade
obtidas com o teste LSD (p<0,05) para as interações entre espessura X substrato
com IPS-Empress
Tabela 78 - Estatística descritiva (média, desvio-padrão) das diferenças de cor da
coordenada de cromaticidade a*, segundo espessura e substratos analisados para a
cerâmica IPS-Empress128

Tabela 79 - Análise de variância das diferenças de cor da coordenada de								
cromaticidade a* (?a*), segundo espessura e substrato para a cerâmica								
IPS-Empress								
Tabela 80 - Resultados das comparações múltiplas das diferenças de cor da								
coordenada de cromaticidade a* obtidas com o teste LSD (p<0,05) para a variável								
espessura com IPS-Empress129								
Tabela 81 - Resultados das comparações múltiplas das diferenças de cor da								
coordenada de cromaticidade a* obtidas com o teste LSD (p<0,05) para a variável								
substrato com IPS-Empress								
Tabela 82 - Resultados das comparações múltiplas das diferenças de cor da								
coordenada de cromaticidade a* (?L*) obtidas com o teste LSD (p<0,05) para as								
interações entre espessura e substrato com IPS-Empress130								
Tabela 83 - Estatística descritiva (média, desvio-padrão) das diferenças de cor da								
coordenada de cromaticidade b*, segundo espessura e substratos analisados para a								
cerâmica IPS-Empress								
Tabela 84 - Análise de variância das diferenças de cor da coordenada de								
cromaticidade b* (?b*), segundo espessura e substrato para a cerâmica IPS -								
Empress131								
Tabela 85 - Resultados das comparações múltiplas das diferenças de cor da								
coordenada de cromaticidade b* (?b*) obtidas com o teste LSD (p<0,05) para a								
variável espessura com IPS-Empress132								
Tabela 86 - Resultados das comparações múltiplas das diferenças de cor da								
coordenada de cromaticidade b* (?b*) obtidas com o teste LSD (p<0,05) para a								
variável substrato com IPS-Empress132								

Tabela 87 - Estatística descritiva (média, desvio-padrão) das diferenças de cor
segundo espessura e substratos analisados para a cerâmica
IPS-Empress 2 + Eris134
Tabela 88 - Análise de variância das diferenças de cor, medidas em unidades de cor
(?E), segundo espessura e substrato para a cerâmica IPS-Empress2 + Eris134
Tabela 89 - Resultados das comparações múltiplas das diferenças de cor obtidas
com o teste LSD (p<0,05) para a variável espessura com
IPS-Empress2 + Eris135
Tabela 90 - Resultados das comparações múltiplas das diferenças de cor obtidas
com o teste LSD (p<0,05) para a variável substrato com
IPS-Empress2 + Eris135
Tabela 91 - Estatística descritiva (média, desvio-padrão) das diferenças de
luminosidade, segundo espessura e substratos analisados para a cerâmica
IPS-Empress2 + Eris136
Tabela 92 - Análise de variância das diferenças de luminosidade (?L*), segundo
espessura e substrato para a cerâmica IPS-Empress2 + Eris136
Tabela 93 - Resultados das comparações múltiplas das diferenças de luminosidade
obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress2 +
Eris137
Tabela 94 - Estatística descritiva (média, desvio-padrão) das diferenças de cor da
coordenada de cromaticidade a*, segundo espessura e substratos analisados para a
cerâmica IPS-Empress2 + Eris137
Tabela 95 - Análise de variância das diferenças de cor da coordenada de
cromaticidade a* (?a*), segundo espessura e substrato para a cerâmica
IPS-Empress2 + Eris138

Tabela 96 - Resultados das comparações múltiplas das diferenças de cor da
coordenada de cromaticidade a* obtidas com o teste LSD (p<0,05) para a variável
espessura com IPS-Empress2 + Eris
Tabela 97 - Resultados das comparações múltiplas das diferenças de cor da
coordenada de cromaticidade a* obtidas com o teste LSD (p<0,05) para a variável
substrato com IPS-Empress2 + Eris139
Tabela 98 - Estatística descritiva (média, desvio-padrão) das diferenças de cor da
coordenada de cromaticidade b*, segundo espessura e substratos analisados para a
cerâmica IPS-Empress2 + Eris140
Tabela 99 - Análise de variância das diferenças de cor da coordenada de
cromaticidade b* (?b*), segundo espessura e substrato para a cerâmica
IPS-Empress2 + Eris140
Tabela 100 - Resultados das comparações múltiplas das diferenças de cor da
coordenada de cromaticidade b* (?b*) obtidas com o teste LSD (p<0,05) para a
variável espessura com IPS-Empress2 + Eris141
Tabela 101 - Resultados das comparações múltiplas das diferenças de cor da
coordenada de cromaticidade b* (?b*) obtidas com o teste LSD (p<0,05) para a
variável substrato com IPS-Empress2 + Eris141

LISTA DE ABREVIATURAS E SIGLAS

a* – coordenada de cromaticidade a*
ANOVA - Análise de variância
b* – coordenada de cromaticidade b*
C1 – disco de cerâmica IPS-Empress na espessura de 1,5mm
C2 – disco de cerâmica IPS-Empress na espessura de 2,0mm
C3 – disco de cerâmica IPS-Empress na espessura de 2,5mm
C4 – disco de cerâmica IPS-Empress2 + Eris na espessura de 1,5mm
C5 – disco de cerâmica IPS-Empress2 + Eris na espessura de 2,0mm
C6 – disco de cerâmica IPS-Empress2 + Eris na espessura de 2,5mm
CAD – computer-aided-design
CAM – computer-aided-manufacturing
CIE – Comissão Internacional de l'Eclairage
EVRSAM – Escala de avaliação visual estendida
FMC – Equação de diferença de cor desenvolvida por Friele, MacAdam e Chickering
L* – coordenada de luminosidade
LSD – Least Significant Differences
m – metros

nm – nanômetros

S1 – substrato resina

S2 – substrato prata-paládio acabado

- S3 substrato prata-paládio acabado e polido
- S4 substrato liga de ouro tipo IV acabado
- S5 substrato liga de ouro tipo IV acabado e polido
- SCE componente especular exclusa
- SCI componente especular inclusa
- u* coordenada u*
- USPHS United States Public Health Service
- UV ultravioleta
- v* coordenada v*
- ? a* unidade de diferença de cor da coordenada de cromaticidade a*
- ?b* unidade de diferença de cor da coordenada de cromaticidade b*
- ? E unidade de diferença de cor
- ?L* unidade de diferença de luminosidade

SUMÁRIO

1 INTRODUÇÃO	31
2 REVISÃO DA LITERATURA	35
2.1 CONSIDERAÇÕES BÁSICAS SOBRE A COR	35
2.1.1 Fonte luminosa ou iluminante	37
2.1.2 Objeto a ser observado	37
2.1.3 Observador	39
2.2 FISIOLOGIA DA COR	40
2.3 PARÂMETROS COLORIMÉTRICOS	42
2.3.1 Matiz ou tonalidade	42
2.3.2 Croma ou saturação	43
2.3.3 Valor ou intensidade luminosa	43
2.4 ESPAÇO DE COR CIEL* a* b*	44
2.4.1 Significância clínica	47
2.5 ANÁLISE INSTRUMENTAL DA COR	50
2.6 COMPORTAMENTO DA COR EM DENTES NATURAIS	51
2.7 COMPORTAMENTO DA COR EM CERÂMICAS ODONTOLÓGICAS	52
3 PROPOSIÇÃO	70
4 MATERIAL E MÉTODOS	72
4.1 MATERIAIS UTILIZADOS	72
4.2 DISPOSITIVOS E EQUIPAMENTOS UTILIZADOS	73
4.3 MÉTODO	74
4.3.1 Obtenção dos discos relativos aos substratos	74

4.3.2 O	btenção d	dos dis	scos relati	vos às c	erâmicas			83
4.3.3 A	nálise ins	strume	ental					92
4.3.4 S	íntese do	experi	imento					98
5 RESI	JLTADOS	S						100
5.1 HO	MOGENE	IDADE	DOS SUB	STRATO	S			100
5.2 MÉ	DIAS-PAD	DRÃO I	DE C1 E C	4				103
5.3 MÉ	DIAS DAS	SASSC	CIAÇÕES	EXPERI	MENTAIS			105
5.3.1 M	lédias das	s asso	ciações ac	substra	to resina (S1)		105
5.3.2 M	lédias das	s asso	ciações ac	substra	to prata-palá	dio acaba	ido (S2) 106
5.3.3	Médias	das	associaç	ões ao	substrato	prata-pa	aládio	acabado
e polid	o (S3)							107
5.3.4 M	lédias das	s asso	ciações ac	substra	to liga de ou	ro acabad	lo (S4).	109
5.3.5 M	lédias das	s asso	ciações ac	substra	to liga de ou	ro acabad	lo (S 5).	110
5.4 CÁ	LCULO DA	AS DIF	ERENÇAS	DE COR				111
5.5 AN	ÁLISE ES	TATÍS	TICA DOS	RESULT	ADOS			119
5.5.1 A	nálise est	tatístic	a dos resi	ultados p	ara a cerâmio	ca IPS-En	npress.	120
5.5.2	Análise	es	statística	dos	resultados	para	а	cerâmica
IPS-En	npress2 +	Eris						133
5.5.3 S	íntese do	s resu	ltados					142
5.5.3.1	Cerâmica	IPS-E	mpress					142
5.5.3.1	Cerâmica	IPS-E	mpress2 +	Eris				143
6 DISC	USSÃO							145
7 CON	CLUSÕES	S						158
REFER	ÊNCIAS							160
APÊNE	DICES							164

1 INTRODUÇÃO

A Odontologia estética é uma das áreas mais promissoras da clínica odontológica. O desenvolvimento de novos materiais e diferentes processamentos laboratoriais impulsionou a viabilidade de técnicas alternativas para o tratamento de dentes comprometidos ou perdidos na região anterior e posterior, tendo como principal objetivo restabelecer adequadamente a forma, função e excelência estética.

A estética de uma restauração depende do material escolhido, forma anatômica, textura superficial, translucidez e cor. (YAMAMOTO, 1985; KNISPEL, 1991; CHU; DEVIGUS; MIELESZKO, 2004). Isto significa que reproduzir com precisão a aparência de um dente vital, considerando os padrões de reflexão e absorção da luz, não é uma tarefa fácil. Felizmente, nossos olhos não são tão sensíveis às mudanças rápidas de cor, como acontece com as variações na anatomia e textura. (JOHNSTON; KAO, 1989).

As cerâmicas são os materiais odontológicos que mais se aproximam da naturalidade do conjunto esmalte/dentina, mimetizando aspectos estéticos e ópticos dos dentes. São biocompatíveis e permitem uma reflexão da luz de forma difusa e regular, reproduzindo com naturalidade a translucidez e cores. Possuem um coeficiente de expansão térmica similar aos dentes naturais, porém, sua baixa resistência à fratura é um fenômeno inerente à microestrutura cristalina,

provavelmente em função de defeitos ou trincas resultantes do processamento laboratorial. (MCLEAN, 2001). Este foi o motivo pelo qual, durante muitos anos, cerâmicas feldspáticas foram aplicadas sobre infra-estruturas metálicas a fim de compensar esta limitação. Porém, o comprometimento estético devido à presença do metal, resultou em uma diminuição da translucidez, com a constatação de uma possível margem escurecida na região cervical da coroa. (RAIGRODSKI, 2004).

A presença necessária de uma infra-estrutura metálica funciona como uma barreira para a transmissão da luz, dando à coroa metalo-cerâmica um aspecto opaco. Com o desenvolvimento das cerâmicas reforçadas, boas propriedades físico-químicas foram associadas à sua resistência, melhorando a capacidade estética e, conseqüentemente, dimizando as reconstruções protéticas. Porém, a associação destes sistemas a núcleos e pinos metálicos, pode transformar o substrato na mesma barreira representada pela infra-estrutura metálica das próteses convencionais. (SIEBER, 1996; HOLLOWAY; MILLER, 1997; MICHALAKIS et al., 2004).

Por estas razões, existe a necessidade de se considerar o efeito da cor do substrato e da espessura do material restaurador quando associados aos sistemas cerâmicos atuais. Espessuras iguais ou menores que 1,5mm de material cerâmico podem não mascarar a cor do substrato e afetar significativamente o resultado estético, sendo necessário, em vários casos, aumentar a espessura do material cerâmico. (DOUGLAS; PRZYBYLSKA, 1999; VICHI; FERRARI; DAVIDSON, 2000; NAKAMURA et al., 2002; DOZIC et al., 2003).

Para analisar o comportamento óptico dos materiais estéticos e observar possíveis alterações na sua cor, dois meios de análise podem ser empregados. O primeiro é conhecido por análise instrumental ou objetiva, e é caracterizado pelo uso de instrumentos de mensuração que especificam numericamente a percepção da cor do objeto, bem como as suas variações. O segundo é a análise visual ou subjetiva, e é realizado através da comparação entre cores padronizadas, onde situações clínicas são julgadas por observadores em condições adequadas de iluminação. (VAN DER BURGHT et al., 1990).

O propósito deste estudo foi analisar instrumentalmente a influência de diferentes substratos quanto ao comportamento da luz, quando coroas cerâmicas são obtidas em diferentes espessuras, com a finalidade de detectar possíveis alterações colorimétricas envolvidas, identificando, quantificando e verificando interações que venham a comprometer as características estéticas desejadas.

Revisão da Literatura

REVISÃO DA LITERATURA 1

2.1 CONSIDERAÇÕES BÁSICAS SOBRE A COR

A cor é um fenômeno psicobiofísico complexo, resultante do comportamento da luz através de seus comprimentos de onda no olho humano. Ela não é uma propriedade do objeto, mas sim da luz que entra em nossos olhos a partir dele. (O'BRIEN; GROH; BOENKE, 1989).

Portanto, o fator verdadeiramente responsável pela nossa percepção visual das cores é a luz. Na ausência desta, apenas conseguimos perceber o escuro, ou seja, o preto. A luz é uma onda eletromagnética que pode ser decomposta em vários comprimentos de onda, dando origem a um amplo espectro que vai desde as ondas de rádio (com comprimentos de onda em quilômetros) até as ondas de raios cósmicos (comprimentos de onda menores que 10⁻¹³m). (SPROULL, 2001a).

_

¹ Baseada na NBR 105020/2002 da ABTN.

A região da luz que nossos olhos alcançam é chamada de luz visível. Ela compreende a faixa de 400 a 700nm, e todas as cores que conhecemos estão dentro deste intervalo. No objeto, a cor que percebemos é uma mistura de vários comprimentos de onda e, portanto, ela pode ser demonstrada a partir de um desenho gráfico conhecido como curva espectral ou espectro da cor. (FIG. 1) (SPROULL, 2001b).

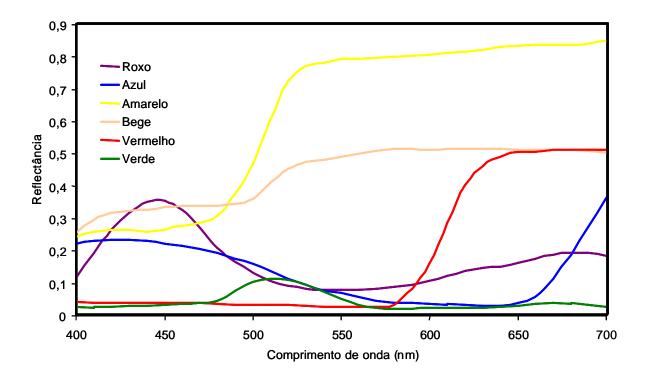


Figura 1 – Curvas espectrais das cores

Fonte - Adaptado de Petter e Gliese, 2000

Descrita como uma ciência abstrata, a cor envolve a participação de três fatores para que possa efetivamente existir: a fonte luminosa ou iluminante, o objeto cuja cor está sendo observada e o observador. (JOINER, 2004).

2.1.1 Fonte luminosa ou iluminante

O iluminante pode ser uma fonte natural ou artificial de luz, e de acordo com a sua origem pode mudar a cor percebida de um objeto. Por exemplo: uma folha de papel branca pode parecer mais azulada sob uma luz fluorescente e mais amarelada sob uma luz incandescente, retornando à sua cor original na presença da luz do dia. Este fenômeno é conhecido por metamerismo. (KNISPEL, 1991).

Com o objetivo de padronizar as análises visuais e instrumentais da cor, a Comissão hternacional de l'Eclairage (CIE) definiu as características espectrais de vários iluminantes (PETTER; GLIESE, 2000):

- a) iluminante padrão D65: corresponde à luz média do dia, incluindo o comprimento de onda ultravioleta;
- b) iluminante padrão C: corresponde à luz média do dia, com quantidade menor de luz ultravioleta;
- c) iluminante padrão A: corresponde à luz incandescente;
- d) iluminante F2: corresponde à luz branca fria.

2.1.2 Objeto a ser observado

O objeto visualizado pode ter diferentes comportamentos físicos em relação à luz incidente. Se ele for transparente, funciona como um meio absorvente, deixando

que a luz passe por ele (transmissão da luz) e permitindo que possamos enxergar através do mesmo. Se ele for translúcido, parte da luz passa pelo objeto e parte é refletida, possibilitando a nossa percepção quanto à cor daquele objeto. Se o objeto for opaco, a reflexão da luz ocorre de forma difusa, sendo responsável pela sensibilização colorimétrica dos nossos olhos. (FIG. 2, 3 e 4) (KNISPEL, 1991).

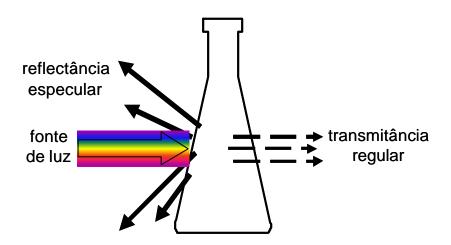


Figura 2 – Comportamento da luz em um objeto transparente

Fonte - Adaptado de Petter e Gliese, 2000

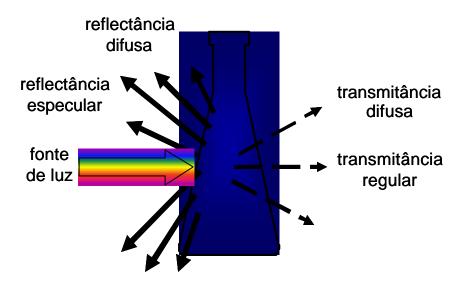


Figura 3 – Comportamento da luz em um objeto translúcido

Fonte - Adaptado de Petter e Gliese, 2000

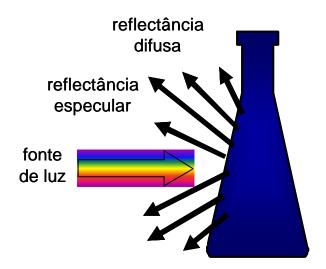


Figura 4 – Comportamento da luz em um objeto opaco

Fonte - Adaptado de Petter e Gliese, 2000

Da mesma forma, se o objeto absorve toda a luz incidente, não existirá reflexão, e então iremos visualizar uma cor escura cu negra. Se o objeto refletir completamente a luz incidente, nossa visão identificará um objeto branco. Porém, se parte da energia luminosa for refletida e parte absorvida, a visualização é de um objeto colorido. (JOINER, 2004).

2.1.3 Observador

A observação da cor de um objeto pode ser realizada de forma visual ou instrumental. Na análise visual, a percepção da cor é um processo subjetivo e a interpretação do observador depende da individualidade visual de cada um. Se o observador for um indivíduo treinado para a análise, ele poderá identificar discretas diferenças de cor. Alterações na percepção da cor podem ocorrer em função da

idade, tempo de exposição do olho, fadiga ou doenças relacionadas à cor como o daltonismo. (VAN DER BURGHT et al., 1990).

Na análise instrumental, instrumentos colorimétricos de medição fazem a observação e o registro da cor de forma quantitativa. Colorímetros e espectrofotômetros são capazes de capturar a luz refletida do objeto através dos tristímulos² gerados, convertendo-os em coordenadas L* a* b* do sistema numérico CIEL*a*b*. (PETTER; GLIESE, 2000).

2.2 FISIOLOGIA DA COR

A luz que penetra no olho humano através da córnea, dirige-se até a retina, onde estão localizados dois tipos de células fotossensíveis, os cones e os bastonetes. Os bastonetes concentram-se na região periférica da retina e são responsáveis pela definição da forma dos objetos e da visão noturna, ou seja, a percepção do claro/escuro na ausência de luminosidade. Por outro lado, os cones estão localizados na área central e são responsáveis pela visão diurna, identificação e diferenciação das cores. (FIG. 5) (PETTER; GLIESE, 2000).

² Quantidade das 3 cores primárias que determinam tridimensionalmente um estímulo colorimétrico. Fonte – Kuehni e Marcus, 1979

Quando a luz atinge o olho, ela é imediatamente assimilada pelas células cones presentes na retina. Estas células fotoreceptoras de luz são basicamente divididas em três categorias: aquelas com maior sensibilidade para o vermelho, outras para o verde e as últimas para o azul. Ao sensibilizar os cones para o vermelho, um pigmento conhecido por critolase é sintetizado. Ao atingir os cones sensíveis para o verde, a síntese de clorolase é obtida, e um pigmento chamado cianolase é produzido pelos cones azuis. A quantidade de pigmentos produzidos pela sensibilização da luz refletida do objeto resulta em X cones vermelhos, Y cones verdes e Z cones azuis. Cada pigmento resultante é responsável por um estímulo colorimétrico. Os três pigmentos geram mensagens que são simultaneamente encaminhadas ao cérebro na forma de tristímulos (X,Y,Z), e de acordo com a concentração de cada pigmento, diferentes cores do objeto (primárias e secundárias) são visualizadas. Se as três concentrações de pigmento forem iguais (X=Y=Z), o objeto observado é branco. (SPROULL, 2001a).

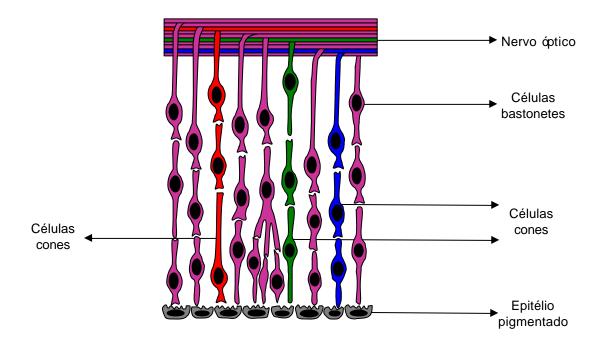


Figura 5 – Estrutura da retina humana

Fonte - Adaptado de Petter e Gliese, 2000

2.3 PARÂMETROS COLORIMÉTRICOS

Munsell (1936 apud O'BRIEN; GROH; BOENKE, 1989) descreveu as três dimensões da cor para objetos opacos: matiz, croma e valor. Esta linguagem ficou mundialmente conhecida, e tornou-se importante entender o conceito tridimensional da cor para que as análises visuais e instrumentais possam ser realizadas.

2.3.1 Matiz ou tonalidade

É o primeiro atributo pelo qual se identifica e diferencia-se a cor, ou seja, é o nome da cor: azul, amarelo, vermelho, verde, entre outros. Ele corresponde ao comprimento de onda refletido pelos objetos. (FIG. 6) (SPROULL, 2001a).

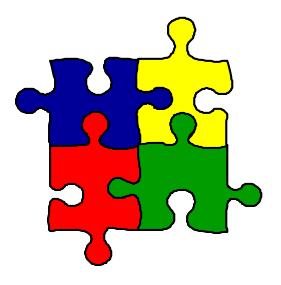


Figura 6 – Matizes azul, amarelo, vermelho e verde

2.3.2 Croma ou saturação

Indica o grau de pureza da cor, quantificando a sua saturação. Quanto mais clara ela for, menor a sua saturação. Por outro lado, a saturação aumenta à medida que o objeto é mais escuro. Por exemplo: o vermelho é um matiz saturado, enquanto que o rosa é o mesmo matiz, porém menos saturado. (FIG. 7) (SPROULL, 2001a).

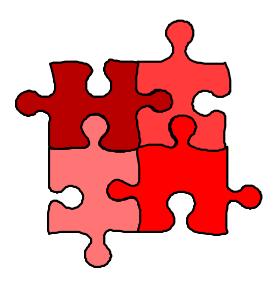


Figura 7 – Saturações do matiz vermelho

2.3.3 Valor ou intensidade luminosa

É a propriedade pela qual se distingue a cor clara da escura. Quanto mais claras forem as cores, maior o seu valor (luminosidade); e quanto mais escuras, menor o seu valor. Um bom exemplo é a luminosidade do branco absoluto, representado pelo valor máximo na escala de intensidade (100). Já o preto absoluto apresenta o valor 0, ou seja, ausência total de luminosidade. (FIG. 8) (SPROULL, 2001a).

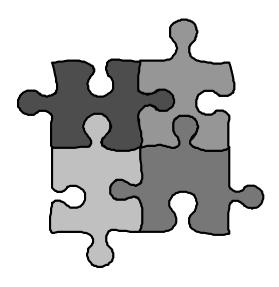


Figura 8 – Valores ou intensidades luminosas das saturações apresentadas na FIG. 7

2.4 ESPAÇO DE COR CIEL* a* b*

Para que a comunicação da cor de um objeto fosse mais precisa, a Comissão Internacional de l'Eclairage (CIE) desenvolveu alguns métodos para expressar as curvas espectrais de forma numérica. O método mais utilizado em Odontologia é o espaço de cor uniforme, conhecido por sistema CIEL*a*b*, que facilita a representação espacial da cor. (FIG. 9) (ROSENSTIEL; JOHNSTON, 1988).

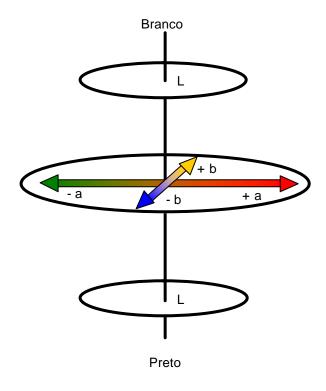


Figura 9 – Sistema CIEL*a*b*

Fonte - Adaptado de Barath et al., 2003

Espaço de cor significa uma área numérica onde se pode expressar e referenciar a cor do objeto. Neste espaço, o valor L* indica a coordenada de luminosidade do objeto com valores de 0 (preto absoluto) a 100 (branco absoluto). Os valores a* e b* indicam as coordenadas de cromaticidade que apresentam o posicionamento tridimensional do objeto no espaço de cor e a sua direção. Quando a coordenada a* for positiva (+a*), a cor do objeto tende ao vermelho. Quando esta coordenada for negativa (-a*), a tendência é a direção para o verde. Esta coordenada pode variar de -90 a 70 ?a*. Já a coordenada b* indica a direção para o amarelo (+b*) e para o azul (b*), e marca de -80 a 100 ?b*. Quando estas duas

coordenadas aproximam-se do valor zero, estamos próximos de uma área acromática (cinza neutro). (O'BRIEN; GROH; BOENKE, 1989).

A projeção espacial dos dados no eixo das coordenadas de cromaticidade a* e b* permitem a visualização dos componentes cromáticos nas mudanças de cor que ocorrem como resultado das diferentes concentrações de pigmentos, enquanto que as mudanças acromáticas são representadas no eixo da coordenada de luminosidade L*. (KNISPEL, 1991).

Os valores das coordenadas L^* , a^* e b^* são obtidos através dos tristímulos X, Y e Z (gerados pela luz refletida do objeto observado), a partir das seguintes equações, onde os valores X_n , Y_n e Z_n correspondem ao branco absoluto (PETTER; GLIESE, 2000):

$$L^* = 116 (Y/Y_n)^{1/3} - 16$$

$$a^* = 500 [(X/X_n)^{1/3} - (Y/Y_n)^{1/3}]$$

$$b^* = 200 [(Y/Y_n)^{1/3} - (Z/Z_n)^{1/3}]$$

O espaço entre dois pontos coloridos é calculado como uma diferença de cor (?E). A magnitude desta diferença pode ser calculada através da seguinte equação (PETTER; GLIESE, 2000):

$$?E = ((?L *)^2 + (?a *)^2 + (?b *)^2)^{1/2}$$

Onde:

 $?L^* = L^*1 - L^*2$ (coordenada L^* do objeto 1 – coordenada L^* do objeto 2)

 $?a^* = a^*1 - a^*2$ (coordenada a^* do objeto 1 - coordenada a^* do objeto 2)

 $?b^* = b^*1 - b^*2$ (coordenada b^* do objeto 1 -coordenada b^* do objeto 2)

2.4.1 Significância clínica

Kuehni e Marcus (1979), com o objetivo de identificar o limite da percepção visual humana e a capacidade de aceitação dos indivíduos para pequenas diferenças de cor, definiram por meio de um experimento clássico, a correlação entre a observação visual humana e quatro conhecidas fórmulas para análise das diferenças de cor (CIEL*a*b*, CIEL*u*v*, FMC-2, FMC). Para tal, 50 amostras de cores similares de tintas e 50 amostras similares de tecidos foram montadas em um fundo de papel fotográfico cinza neutro e medidas por um espectrofotômetro de reflectância. Os dados foram obtidos tanto para o observador (padrão), como para o iluminante (D65). As diferenças de cor entre o grupo controle e as amostras foram calculadas através das quatro fórmulas, que resultaram em valores similares. Trinta e sete observadores foram solicitados a comparar a cor do grupo controle com as amostras experimentais. Em um segundo momento, os observadores definiram individualmente as diferenças de cor, estabelecendo valores de 1 a 10. Finalmente, aceitaram ou rejeitaram as diferenças de cor das amostras observadas. Um coeficiente de correlação linear foi calculado para cada grupo de amostras e a magnitude das diferenças de cor perceptíveis foi estabelecida. Os autores

concluíram que diferenças de cor entre duas amostras com 1? E (sistema CIEL*a*b*) foram percebidas e julgadas aceitáveis por 50% dos observadores em condições ideais de iluminação.

Johnston e Kao (1989) determinaram a relação existente entre um critério visual, a proposta de uma escala de avaliação visual estendida e a análise instrumental para avaliação da cor em materiais dentais. Em 1971, o Departamento de Saúde, Educação e Previdência do Governo Americano publicou a norma 790-211 que estabeleceu o critério USPHS (Critério para a avaliação clínica da estabilidade de cor em materiais odontológicos restauradores). Este critério foi obtido através de comparações visuais entre dentes adjacentes e restaurações, com auxílio dos escores Alfa, Bravo e Charlie. Com base neste critério e no estudo clássico de Kuehni e Marcus em 1979, os autores propuseram uma escala de avaliação visual estendida (EVRSAM). Quarenta e duas facetas de resina composta foram avaliadas instrumentalmente por um colorímetro (Chroma Meter CR-121, Minolta, Japão), e visualmente por dois examinadores com o critério USPHS e a escala EVRSAM. Tanto a avaliação objetiva quanto a subjetiva foram realizadas logo após as facetas terem sido confeccionadas e após 6 e 12 meses. Os resultados indicaram que existiu uma relação instrumental e visual entre USPHS e EVRSAM, sendo que as diferenças de cor calculadas para o escore Alfa foram de 2,2 a 4,4? E, e para o escore Bravo de 3,8 a 9,3? E. Nenhuma faceta de resina foi classificada com o escore Charlie. Portanto, na cavidade oral, onde existe dificuldade de controlar as condições de luz, uma diferença média de até 3,7? E foi considerada aceitável pelos autores. (QUADRO 1).

?E	Significância clínica
(diferença de cor)	
0	Excelente estética com exata escolha da cor,
	não sendo percebida clinicamente, ou apenas com muita dificuldade.
2	Diferença de cor muito discreta, com estética muito boa.
4	Diferença óbvia, mas com uma média aceitável para a maioria dos pacientes.
6	Pobre estética, no limite da aceitabilidade.
8	Estética muito pobre, sendo inaceitável para a maioria dos pacientes.
10	Estética totalmente inaceitável.

Quadro 1 – Escala de avaliação visual estendida (EVRSAM) Fonte – Johnston e Kao, 1988

Segui; Hewlett; Kim (1989) estabeleceram uma correlação entre a percepção visual e as mensurações instrumentais, com médias obtidas por diferentes observadores e um colorímetro. Trinta e um discos de 12mm de diâmetro e 4mm de espessura foram fabricados em cerâmica (Vita VMK68, Vita Zahnfabrik, Alemanha), variando suas concentrações de pigmentos para produzir pequenas diferenças de cor, porém, respeitando os limites de identificação visual propostos por Kuehni e Marcus em 1979. Vinte e sete observadores realizaram uma avaliação visual, sendo 23 cirurgiões-dentistas e 4 técnicos de laboratório com mais de 12 anos de experiência e sem defeitos visuais ligados à cor, como o daltonismo. Eles foram solicitados a ordenar as amostras de acordo com o aumento de saturação dos pigmentos, sendo que elas foram apresentadas aos profissionais de forma randomizada. Na avaliação da cor, um colorímetro (Minolta CR100 Chroma Meter, Minolta Corp, USA) foi preparado para identificar possíveis diferenças de cor em superfícies translúcidas. As medidas obtidas foram transformadas em coordenadas

do sistema CIEL*a*b* e os resultados objetivos e subjetivos comparados entre si, apoiando que o uso do modelo matemático relaciono u precisamente diferentes valores de cor com as respostas visuais dos observadores, e que diferenças de ?E=2 puderam ser identificadas em condições ideais de iluminação.

2.5 ANÁLISE INSTRUMENTAL DA COR

A análise instrumental da cor é caracterizada como um método objetivo de análise que utiliza equipamentos colorimétricos de medição. Colorímetros e espectrofotômetros vêm sendo utilizados na Odontologia para a determinação, quantificação e comparação na fabricação industrial de materiais e em pesquisas de avaliação comportamental da cor em materiais estéticos como cerâmicas e resinas compostas. (SPROULL, 2001b).

Novos instrumentos têm sido projetados para o uso clínico, com a finalidade de selecionar a cor diretamente em boca, transmitir os dados ao laboratório, controlar o resultado obtido em restaurações diretas, indiretas e clareamentos dentais e minimizar o fator subjetivo da percepção visual. (SPROULL, 2001b).

Dois tipos de equipamentos têm sido utilizados: os colorímetros e os espectrofotômetros. Os colorímetros analisam os valores para o vermelho, verde e azul refletidos através de filtros sensores que simulam as células fotoreceptoras do olho humano. Os tristímulos X, Y e Z são convertidos em coordenadas L* a* e b* do

sistema CIEL*a*b*. Desta forma, os colorímetros podem interpretar e definir os fenômenos físicos na percepção instrumental da cor. (PARAVINA, 2002).

Os espectrofotômetros medem e registram a quantidade de luz refletida ou transmitida do objeto através de seu comprimento de onda. Este registro é obtido nas coordenadas L*, a* e b*. Estes aparelhos possuem alta precisão, sensibilidade para medir cores absolutas e são equipados com distribuições espectrais de vários iluminantes. Os espectrofotômetros mais precisos são os de esfera de integração, chamados ópticos esféricos, nos quais o objeto é exposto à luz em diferentes ângulos e direções durante a sua análise. (PARAVINA, 2002).

2.6 COMPORTAMENTO DA COR NOS DENTES NATURAIS

A cor de um dente é determinada pela combinação de efeitos colorimétricos intrínsicos e extrínsicos. A cor intrínsica é associada com as propriedades de reflexão e absorção da luz. A cor extrínsica é relacionada com a absorção de materiais corantes como café, chá, fumo, entre outros, na superfície externa do esmalte. (TEN BOSCH; COOPS, 1995).

Quando a luz incide em um dente natural, quatro fenômenos associados podem ser descritos: transmissão da luz através do dente, reflexão especular a partir da sua superfície externa, reflexão difusa da luz na superfície vestibular, absorção e

espalhamento da luz nos tecidos dentais. O esmalte comporta-se como um objeto translúcido, ou seja, durante a passagem da luz permite a visualização da dentina e ao mesmo tempo proporciona o espalhamento da luz no comprimento de onda azul através dos seus cristais de hidroxiapatita. Fatores como a espessura do esmalte, forma, textura superficial, cor predominante da dentina, duplo efeito de camadas e fonte luminosa podem dificultar ainda mais a percepção visual das diferentes nuances do conjunto dental. (CHU; DEVIGUS; MIELESZKO, 2004).

O dente natural transmite a luz em diferentes direções por toda a sua área. A luz que penetra em nossos olhos vinda da superfície vestibular é o resíduo da transmissão difusa que ocorre dentro do dente natural, diferente das coroas metalocerâmicas, onde a luz refletida pela cerâmica opaca e pelo metal, atravessa a cerâmica dentinária e de esmalte, entrando diretamente em nossos olhos. Portanto, nestes casos, não há transmissão de luz, exceto na área incisal que não possui metal, gerando um efeito marcante entre a área de transmissão e reflexão da luz. (MICHALAKIS et al., 2004).

2.7 COMPORTAMENTO DA COR EM CERÂMICAS ODONTOLÓGICAS

Jorgenson e Goodkind (1979) investigaram a influência da espessura de cerâmica e de repetidas queimas ros parâmetros da cor, através de um estudo experimental com 5 diferentes matizes do material. As amostras testadas possuíam uma base metálica cilíndrica que foi recoberta pelas seguintes cerâmicas: Ceramco

nas cores A3, B2 e D3 (Ceramco, USA); Vita VMK68 nas cores opaca e 544 (Vita Zahnfabrik, Alemanha), e Trubyte Biodond nas cores O2 opaca e B62 (Dentisply Internacional, USA). As 125 amostras foram analisadas em 3 diferentes espessuras (1; 2 e 3mm) e em 2 tempos de queima (após a primeira queima e após o glazeamento), com o auxílio de um espectrofotômetro (General Eletric, USA). Na interpretação dos resultados, repetidas queimas não afetaram a estabilidade da cor, e o aumento na espessura das cerâmicas apresentou bons resultados com todas as cores testadas. O croma foi mais afetado que o matiz em todas as cerâmicas, sendo que os experimentos não foram suficientemente conclusivos para o comportamento do valor, principalmente nos índices mais baixos.

Brewer et al. (1985) examinaram as diferenças de cor que ocorrem durante o processamento de coroas metalo-cerâmicas. Para tal, cerâmica Vita VMK68 (Vita Zahnfabrik, Alemanha) na cor A2 (Escala Vita Lummin, Vita Zanhfabrik, Alemanha) foi aplicada sobre 3 ligas metálicas para cerâmica: ouro cerâmico (Will Ceram Y, Willians Gold Refining, USA), prata-paládio (Will Ceram W-1, Willians Gold Refining, USA) e níquel-cromo (Litecast B, Willians Gold Refining, USA). Vinte e quatro amostras foram analisadas com um espectrofotômetro (Beckman DK-2A, Beckman Instruments, USA) em cada uma das seguintes etapas: preparo do metal, oxidação, primeira e segunda camadas de opaco, primeira e segunda aplicação de cerâmica dentinária e glazeamento. Os valores obtidos dos tristímulos X, Y e Z e as coordenadas de cromaticidade L* a* e b* resultaram nos dados registrados e analisados pelo sistema de mensuração da cor CIEL*a*b*. As diferenças na cor das amostras metalo-cerâmicas puderam ser quantificadas, demonstrando que

alterações notáveis de cor apareceram após a aplicação da primeira camada de cerâmica, principalmente com a liga de prata-paládio.

Segui; Johnston; O'Brien (1986) utilizaram uma técnica de avaliação colorimétrica para observar diferenças de cor que poderiam existir entre 3 cerâmicas com idêntica designação de matizes. Quatro cores foram selecionadas de acordo com uma escala universal (Vita Lumin, Vita Zahnfabrik, Alemanha): A1, B2, C4 e D3, e 3 cerâmicas escolhidas: Vita VMK68 (Vita Zahnfabrik, Alemanha), Shofu Crystar (Shofu Dental Corp., USA) e Biodond Dentisply (Dentisply Internacional, USA). As amostras com 1mm de espessura, foram obtidas através de uma matriz metálica previamente idealizada para este fim, acabadas e polidas com uma série de papéis abrasivos. Duas amostras de cada cerâmica foram analisadas com o auxílio de um encaixe esférico acoplado a um espectrofotômetro (Beckman ACTA C-3, Beckman Instruments, USA). O sistema de cor CIEL*a*b* foi utilizado para descrever a cor real dos objetos. Por meio dos resultados, os autores demonstraram que materiais com mesma designação de matizes produziram cores visivelmente diferentes, alertando que as variações nas características óticas das cerâmicas produzidas por diferentes fabricantes podem sugerir deficiências no controle da cor durante o processamento laboratorial das mesmas.

Jacobs et al. (1987) avaliaram visual e instrumentalmente as mudanças de matiz, valor e croma em coroas metalo-cerâmicas, resultantes da variação no tipo de liga metálica, espessura e cor da cerâmica. Amostras retangulares com 2,3 x 1,7cm e com espessura de 0,5mm foram obtidas em 3 tipos de ligas: ouro-prata-paládio (Jelenko O, Jelenko Dental Health Products, USA), níquel-cromo (Unibond, Unitek

Corp, USA) e alta concentração de paládio (Option, J.M. Ney Co, USA). Estas ligas receberam 3 cores da cerâmica VMK 68 (Vita Zahnfabrick, Alemanha): B1, A3 e C3. As cerâmicas foram aplicadas em espessuras de 0,5; 1; 1,5mm para cada liga metálica e cor. Oitenta e uma amostras foram preparadas, 27 para cada tipo de liga. Os registros espectrofotométricos obtidos (Espectrofotômetro General Eletric, USA) foram utilizados para quantificar a análise, sendo os dados registrados pelo sistema CIEL*a*b*. Na análise visual, 15 indivíduos foram escolhidos para observar as amostras em duas diferentes situações: coroas metalo-cerâmicas com o mesmo metal e diferentes espessuras de cerâmica, e coroas metalo-cerâmicas com diferentes metais. Os examinadores analisaram as amostras com exposição solar, em orientação norte, e ao meio-dia. Tanto a análise instrumental como a visual, produziram resultados similares, porém, mudanças mais evidentes na cor foram percebidas com mais freqüência visualmente. O tipo de liga produziu pequenas alterações na cor da porcelana, quando B1 e C4 foram utilizadas. Entretanto, com A3, diferenças significativas foram encontradas entre as 3 ligas, sendo mais evidentes nas amostras de níquel-cromo. Nenhuma diferença significante foi observada no croma e no valor. Quanto à espessura de cerâmica, as cores mais influenciadas pelas diferenças de cor foram A3 e C4, seguidas por B1, provavelmente em função da quantidade de cerâmica opaca necessária para a obtenção da cor real final.

Rosenstiel e Johnston (1988) descreveram a variabilidade dos parâmetros colorimétricos em amostras de restaurações metalo-cerâmicas e determinaram como as diferenças nas técnicas de manipulação e diferentes materiais afetam a cor destas restaurações. Sessenta infra-estruturas foram obtidas em liga de ouro-paládio

(Olympia, Jelenko Dental Health Products, USA) e 5 fundidas em liga à base de paládio (Pg80, Unitek Corp, USA), a partir de um modelo com um preparo para coroa metalo-cerâmica em um incisivo central superior. Estas infra-estruturas foram divididas em 13 grupos que receberam as seguintes cerâmicas e seus processamentos laboratoriais: Vita VMK68 de acordo com as instruções do fabricante, Vita VMK68 preparada com líquido especial Carv-Eze (George Taub Produscts, USA), Vita VMK68 preparada com líquido especial Rainbow (HD Justi Co, USA), Vita VMK68 preparada com água destilada, Vita VMK68 subcondensada, Vita VMK68 sobrecondensada, Vita VMK68 com subqueimas, VITA VMK68 com sobrequeimas (Vita Zahnfabrick, Alemanha), Spectratone (DVA Inc, USA), Jelenko (Jelenko Dental Health Products, USA), Ceramco II (Ceramco, USA), Crystar (Unitek Corp., USA) e Will-Ceram (Williams Gold Refining, USA). As amostras fundidas em paládio foram utilizadas com a cerâmica Crystar, por esta ser incompatível com a liga de ouro-paládio. Todas as coroas obtidas foram mensuradas por um colorímetro (CR121 Chroma Meter, Minolta Corp, Japão) sobre um fundo preto absoluto. As coordenadas de cromaticidade L* a* b* foram obtidas e demonstraram que o colorímetro foi capaz de detectar diferenças de cor estatisticamente significantes entre os grupos testados. A variabilidade na cor mostrou-se dependente do processo laboratorial utilizado. As maiores diferenças foram observadas pela marca do produto, seguidas do tempo de queima e técnica de condensação. Os líquidos de modelagem não demonstraram diferenças estatisticamente significantes na cerâmica testada.

Segui; Johnston; O'Brien (1989) observaram a performance de 3 instrumentos de análise de cor, sendo 2 espectrofotômetros de reflectância: Match-

Scan (Diano, USA), Spectrogard (Gardner/Neotec, USA) e um colorímetro fotoelétrico de tristímulos: CR100 Chroma Meter (Minolta Corp, USA), referenciandose nos dados iniciais obtidos por um espectrofotômetro (Hardy, General Eletric, USA). Vinte pós de cerâmica opaca e translúcida (Vita VMK68, Vita Zahnfabrik, Alemanha) foram selecionados e processados em discos com 12mm de diâmetro e 3mm de espessura para as cerâmicas opacas e 1mm para as cerâmicas translúcidas. Os discos foram acabados e polidos para que a textura superficial não influenciasse no resultado final da análise. Cada disco foi mensurado em ordem aleatória por 3X. Os dados espectrofotométricos foram convertidos em coordenadas do sistema CIEL*a*b*, e as diferenças encontradas foram descritas em unidades de diferença de cor (? E). Os resultados revelaram que cada instrumento fotométrico é capaz de produzir mensurações com precisão. Entretanto, este grau pode variar dependendo do instrumento aplicado e do material analisado. O colorímetro apresentou os melhores resultados na mensuração da cor absoluta em todas as cerâmicas testadas como evidenciado pelos baixos valores de ? E, demonstrando ser uma ferramenta viável para avaliação da cor em Odontologia.

Terada; Maeyama; Hirayasu (1989) investigaram a influência de diferentes espessuras de material na cor de cerâmicas opacas associadas a infra-estruturas metálicas. Uma liga de ouro (Degudent Universal, Mitsubishi Metal Corp, Japão) e uma liga de níquel-cromo (Ticon, Ticonium Co, USA) foram fundidas em amostras de 12x16x1mm. Cerâmica opaca (Vita VMK68, Vita Zahnfabrik, Alemanha) foi aplicada à superfície metálica em diferentes espessuras (0,1; 0,2 e 0,3mm). Cerâmica dentinária (Vita VMK68, Vita Zahnfabrik, Alemanha) foi aplicada sobre a cerâmica opaca até completar 0,5mm de espessura. As amostras foram mensuradas por um

colorímetro (Hitachi color 607, Hitachi Co, Japão) e as coordenadas L* a* b* obtidas através dos tristímulos gerados. Diferenças perceptíveis de cor (? E >1,5) foram observadas entre as espessuras de 0,2 e de 0,3mm de cerâmica opaca.

Crispin; Okamoto; Globe (1991) compararam as diferenças visuais na percepção da luminosidade em 2 grupos de coroas obtidas com diferentes infraestruturas. No grupo 1, 10 coroas metalo-cerâmicas foram produzidas com liga de ouro (Galaxy, Sterngold, USA) ou liga de níquel-cromo (Rexillium III, Jeneric Industries, USA). No grupo 2, coroas ocas de cerâmica (Vita VMK68, Vita Zahnfabrik, Alemanha) foram construídas com ou sem lâminas internas de platina. Ambos os grupos foram visualmente analisados por 13 examinadores para identificar possíveis diferenças na luminosidade. Se as respostas não fossem corretas, o examinador era solicitado a separar a coroa que julgasse ter o menor valor. Os resultados analisados demonstraram que, no grupo das coroas metalo-cerâmicas com liga de níquel-cromo, a luminosidade foi mais baixa quando comparada com a liga de ouro. Porém, as coroas ocas de cerâmica com lâmina de platina demonstraram menor luminosidade, quando comparadas com aquelas sem a lâmina.

Douglas e Brewer (1998) observaram a relação espectrofotométrica entre as diferenças de cor instrumentais (?E) e aquelas observadas pelo olho humano em coroas metalo-cerâmicas. O centro da superfície vestibular de 60 coroas metalo-cerâmicas fabricadas laboratorialmente na cor A3,5 (Escala Vita Lumin, Vita Zahnfabrik, Alemanha) foi medido com um colorímetro de tristímulos (Minolta CR321, Minolta Corp, USA) sobre a placa de calibração branca do aparelho. Os

valores das coordenadas L* a* b* foram calculados a partir dos tristímulos gerados, resultando em 3 grupos: amostras com maior variação na luminosidade (L*); amostras com maior variação no croma vermelho (a*); e por último, aquelas que apresentavam maior variação no amarelo (b*). Vinte especialistas em Prótese, com uma média de 14 anos de prática, avaliaram as coroas anteriormente medidas. Todas as observações foram realizadas em um fundo cinza neutro, com o iluminante artificial D65 (que representa a luz do dia), durante 10s. Os observadores responderam questões sobre a percepção da cor através de escalas e a aceitabilidade desta associação (amostras x escalas). Os resultados instrumentais demonstraram que as menores alterações de cor foram observadas para o vermelho (média de 1,1?E), seguido do amarelo (média de 2,1?E). Na análise visual, pequenas mudanças de cor puderam ser visualizadas no amarelo, seguidas pelo croma vermelho; porém, os dados de luminosidade não puderam ser incluídos devido a uma pobre correlação da coordenada L* entre a análise instrumental e a visual.

Douglas e Przybylska (1999) analisaram o comportamento de 3 sistemas cerâmicos (IPS-Empress, Ivoclar Vivadent, Leichtenstein; InCeram Alumina e InCeram Spinell, Vita Zahnfabrik, Alemanha) e 2 sistemas para coroas metalocerâmicas (Vintage, 3M, USA e VMK95, Vita Zahnfabrik, Alemanha) nas cores A1, A3 e C2 (Escala Vita Lumin, Vita Zahnfabrik, Alemanha). Cinco discos (18 x 2,5mm) foram obtidos de cada cerâmica nas espessuras de 1; 1,2; 1,5 e 2mm. As escalas de cores das respectivas cerâmicas foram mensuradas por um colorímetro (Minolta CR321, Minolta Corp, USA) com o auxílio de um posicionador borrachóide, para que o terço médio-incisal de cada escala fosse medido adequadamente. Depois, os

discos foram posicionados sobre um fundo branco e medidos com o mesmo aparelho. Os resultados foram comparados com as medições realizadas nas escalas correspondentes. Em todas as espessuras testadas, os sistemas cerâmicos exibiram mais alterações de cor que as cerâmicas para coroas metalo-cerâmicas. As diferenças de cor entre escalas e amostras foram maiores na coordenada L* (70% de variação) seguida pela coordenada b* (29% de variação).

Vichi; Ferrari; Davidson (2000) avaliaram a influência da cor de 2 pinos opacos não metálicos (fibra de carbono e zircônio), 1 pino estético experimental e a cor e espessura do agente cimentante na estética final de restaurações totalmente cerâmicas. Discos de cerâmica foram obtidos com 1; 1,5 e 2mm de espessura em IPS-Empress cor 230 (Ivoclar Vivadent, Liechtenstein). Discos de fibra de carbono (RTD, França), um material experimental branco (RTD, França) e resina composta cor A3 (Z100, 3M-Espe, USA) simularam a condição do substrato. De maneira similar, discos do cimento Variolink II (Ivoclar Vivadent, Liechtenstein) foram preparados em espessuras de 0,1 e 0,2mm em 3 cores (branco, amarelo e marrom). As combinações foram mensuradas por um espectrofotômetro (PSD 1000, Ocean Optics, USA). A influência da espessura de cerâmica foi testada no grupo A, a influência da cor do cimento foi testada no grupo B, e a influência da espessura de cimento foi testada no grupo C. Os dados foram registrados no sistema CIEL*a*b* e analisados com um programa específico (Software 601 Lab 1.0, Ocean Optics, USA). Quando a espessura de cerâmica vestibular foi de 2mm, independente do tipo de combinação aplicada, as diferenças de cor foram detectadas com o espectrofotômetro, mas não se mostraram estatisticamente significantes. Quando a espessura de cerâmica diminuiu para 1,5mm, existiu a necessidade de avaliar a

condição do substrato. Diferenças na espessura de cimento podem influenciar discretamente no resultado final, sendo que a cor dos cimentos permitiu somente pequenas correções estéticas instrumentalmente detectáveis, mas não clinicamente relevantes.

Carossa et al. (2001) observaram a influência de diferentes núcleos na transmissão de luz em coroas totalmente cerâmicas. Foram utilizados 4 tipos de núcleos: núcleo de ouro polido, núcleo de ouro acabado sem polimento, núcleo cerâmico (IPS-Empress2, Ivoclar Vivadent, Liechtenstein), núcleo ceramizado com liga metálica e 3 sistemas de coroas totalmente cerâmicas: IPS-Empress2 com pintura superficial (Ivoclar Vivadent, Liechtenstein), IPS-Empress2 pela técnica estratificada (Ivoclar Vivadent, Liechtenstein) e InCeram Alumina (Vita Zahnfabrik, Alemanha). Estas reconstruções foram alojadas em dentes naturais e combinadas entre si. As amostras foram analisadas por um espectrofotômetro (Spectro Pritchard Photometer 1980 B/SX, USA), sendo os dentes naturais analisados antes do preparo, em associação com os núcleos e após receberem todas as associações experimentais. Quatro zonas foram observadas: cervical, média, incisal e proximal. Os dentes naturais apresentaram a maior luminosidade. As coroas de IPS-Empress2 maquiadas apresentaram alta luminosidade, seguidas das coroas InCeram e IPS-Empress2 estratificadas. Quando os núcleos foram posicionados, os melhores resultados foram obtidos pelos ceramizados e metálicos polidos, sugerindo que não existem contra-indicações estéticas na associação de núcleos de ouro polidos com coroas totalmente cerâmicas.

Heffernan et al. (2002a) compararam a média de translucidez de 6 sistemas cerâmicos fabricados em espessura clínica adequada. Cinco discos de 13mm de diâmetro foram fabricados para os sistemas IPS-Empress, IPS-Empress2 (Ivoclar Vivadent, Liechtenstein), InCeram Alumina, InCeram Spinell, InCeram Zircônia (Vita, Zahnfabrik, Alemanha) e Procera AllCeram (Nobel Biocare, Suécia). Dois grupos adicionais foram fabricados em IPS-Empress e IPS-Empress2 com espessura de 0,8mm. A cor escolhida para as cerâmicas foi A2 (Escala Vita Lumin, Vita, Zahnfabrik, Alemanha). Uma liga de ouro associada a uma cerâmica feldspática (52-SF, WE Mowrey, USA) serviu como grupo controle. A quantidade de translucidez foi obtida por comparação com a quantidade de reflectância, que por sua vez foi medida por um espectrofotômetro (Lambda 20, Perkin-Elmer Corp, USA). Três mensurações foram feitas em cada amostra, em um fundo preto e mais 3 com um fundo branco, somando 6 mensurações por amostra. O InCeram Spinell apresentou translucidez semelhante a um dente natural, seguido pelo grupo do IPS-Empress, Procera AllCeram e IPS-Empress2 que apresentaram resultados de moderada translucidez, seguidos pelo InCeram Zircônia.

Heffernan et al. (2002b) analisaram a translucidez de 6 coroas cerâmicas polidas e glazeadas em espessura clínica adequada. Cinco amostras de cada cerâmica: IPS-Empress, IPS-Empress2 (Ivoclar, Vivadent Liechtenstein), InCeram Alumina, InCeram Spinell, InCeram Zircônia (Vita Zahnfabrik, Alemanha) e Procera AllCeram (Nobel Biocare, Suécia) foram fabricadas com espessura média de 1,47+/-0,01mm e comparadas com discos de uma cerâmica opaca (Vitadur Alpha, Vita Zahnfabrik, Alemanha), um disco vítreo (controle positivo) e uma liga nobre para coroa metalo-cerâmica (52-SF, We Mowrey Co, USA) recoberta por cerâmica

(Omega Vitadur, Vita Zahnfabrik, Alemanha) como controle negativo. A reflectância foi mensurada por um espectrofotômetro (Lambda 20, Perkin-Elmer Corp, USA) para analisar o grau de translucidez após o ciclo de glazeamento, onde constataram que todos os materiais testados são relativamente opacos. O InCeram Zircônia e o controle metalo-cerâmico exibiram similar opacidade, enquanto que o ciclo de glazeamento diminuiu a opacidade medida de todas as cerâmicas testadas, sugerindo que a queima adicional resulta em diferenças significantes na translucidez.

Nakamura et al. (2002) avaliaram a cor final de coroas, quando cerâmica à base de leucita em diferentes espessuras foi associada a substratos metálicos. Para esta investigação, 30 discos de cerâmica IPS-Empress (Ivoclar, Vivadent, Liechtenstein) na cor A1 foram obtidos com 10mm de diâmetro em diferentes espessuras: 1; 1,2; 1,4; 1,6 e 2mm. Um disco de 0,5mm de espessura e 10mm de diâmetro foi fundido em liga de ouro tipo IV (CG, Japão) e polido. Cerâmica opaca e cerâmica dentinária (VWK95, Vita Zahnfabrik, Alemanha) constituíram outro disco de 10mm de diâmetro e 2mm de espessura (1mm para cada cerâmica). Estes 2 discos foram utilizados como substrato. Um colorímetro (OFC 80 Color Measurinhg System, Nippon Denshoku, Japão) mensurou as combinações entre os discos e 3 medidas de cor foram obtidas de cada associação. As coordenadas de cromaticidade L* a* b* foram analisadas pelo sistema CIEL*a*b*, e as diferenças de cor (? E) obtidas. Os autores concluíram que, na presença de um núcleo de ouro polido, a espessura de cerâmica deve ser igual ou maior que 1,6mm para mascarar a presença do metal.

Koutayas et al. (2003) analisaram a influência de 5 diferentes materiais restauradores utilizados em pilares para próteses implanto-suportadas e infraestruturas protéticas, na cor final de cerâmicas aluminizadas. Sessenta discos com 10mm de diâmetro e 0,6mm de espessura foram obtidos em alumina densamente sinterizada (Procera AllCeram, Nobel Biocare, Suécia) e recobertos com cerâmica feldspática (AllCeram, Ducera, Alemanha) até chegar a 2mm. Dez destes discos serviram como grupo controle. Cingüenta discos (10 x 3mm) foram fabricados nos seguintes materiais: liga ouro (Degulor M, Degussa, Alemanha), liga titânio (Rematitan, Dentaurum, Alemanha), óxido de alumínio (Ceradapt, Nobel Biocare, Suécia), dióxido de zircônio (Denzir, Decim, Suécia) e uma cerâmica vítrea (IPS-Empress, Ivoclar Vivadent, Liechtenstein). Estes discos foram unidos aos discos de cerâmica aluminizada com um cimento resinoso autopolimerizante (Panavia 21 TC, Kuraray, Japão). O grupo controle e os 5 grupos experimentais foram analisados em um colorímetro (Microcolor, Braive Instruments, Bélgica). As diferenças de cor foram calculadas, permitindo a comparação entre os grupos, que mostraram diferenças estatisticamente significantes entre a liga de titânio e o óxido de alumínio, porém, não visualmente percebidas (? E <2).

Dozic et al. (2003) determinaram quantitativamente o efeito de diferentes espessuras de cerâmicas opaca e translúcida na cor final de amostras cerâmicas produzidas por um sistema CAD/CAM (CICERO, Elephant Dental, Holanda). Dez discos simulando a infra-estrutura da prótese foram obtidos com diâmetro de 35mm, nas espessuras de 0,70 e de 1mm (Synthoceram, Elephant Dental, Holanda). Discos com o mesmo diâmetro e diferentes espessuras (0,25; 0,50; 0,75 e 1mm) foram obtidos para a cerâmica opaca nas cores A1, A2 e A3, e para as cerâmicas

translúcidas (0,25; 0,50; 0,75 e 1mm) nas mesmas cores (Sintagon Plus, Elephant Dental, Holanda). Os discos foram cortados na espessura desejada com um disco de diamante de 300µm em uma máquina universal de corte, dispensando o procedimento de polimento. Cada disco foi medido por 5 vezes com um micrômetro digital (Mitutoyo IDU25, Mitutoyo Manufacturing Company Ltda, Japão). No momento da análise ótica, eles foram empilhados (infra-estrutura + cerâmica opaca + cerâmica translúcida) até obter espessura final de 1,7mm para todos os grupos. Um espectrofotômetro de esfera de integração (Color-Eye 7000A, Gretag-Macbeth, USA) foi utilizado para o teste. Água destilada foi aplicada entre os discos para diminuir o efeito de *edge loss* (perda de luz na extremidade). Os resultados indicaram que pequenas mudanças na espessura podem influenciar na cor final da cerâmica, e que a espessura de 0,7mm da base foi suficiente para mascarar a cor do substrato.

Barath et al. (2003) investigaram o efeito de 3 agentes cimentantes na cor final de 2 sistemas cerâmicos (IPS-Empress2, Ivoclar Vivadent, Liechtenstein e InCeram Alumina, Vita Zahnfabrik, Alemanha). Quarenta e cinco discos cerâmicos foram obtidos de cada fabricante em 3 cores distintas, com 16mm de diâmetro, resultando em 6 grupos com espessuras padronizadas de 1 a 1,4mm. Os discos relativos aos agentes cimentantes - fosfato de zinco em cor neutra (PhospaCem, Ivoclar Vivadent, Liechtenstein), ionômero de vidro cor universal (KetacCem, Espe Dental AG, Alemanha) e cimento resinoso na cor A3 (COMP, Espe Dental AG, Alemanha) - foram prensados em um dispositivo especial e medidos com um micrômetro (Mitutoyo, Mitutoyo Manufacturing Company Ltda, Japão) até obter uma espessura de 0,8 a 1,8mm. Após, foram associados entre si e medidos com um colorímetro (LUCI 100, Alemanha) em fundo branco e preto, sendo que as medidas

obtidas foram tratadas no sistema CIEL*a*b*. Os resultados demonstraram que as cerâmicas do sistema IPS-Empress2 foram mais translúcidas que as do sistema InCeram Alumina, e que os agentes de cimentação influenciaram discretamente a cor final das restaurações.

Nakamura et al. (2003) avaliaram a influência do substrato na cor de coroas livres de metal. Para tal, 4 materiais resinosos foram utilizados: Artglass (Heraeus Kulzer, USA), Estenia (Kuraray Dental, Alemanha), Targis (Ivoclar Vivadent, Liechtenstein), Solidex (Shofu Dental Corp, USA) e um sistema cerâmico: IPS-Empress (Ivoclar Vivadent, Liechtenstein). Cinco discos de mesma cor (A3) foram obtidos para cada material com 10mm de diâmetro e 1mm de espessura. Discos metálicos foram utilizados para simular núcleos em liga de ouro tipo IV e liga de prata-paládio (Castwell Products Inc, USA), e discos cerâmicos (Cerâmica VMK95, Vita Zahnfabrik, Alemanha) para simular pinos estéticos. Os discos foram associados e a translucidez foi medida por um colorímetro (OFC 80 Color Measurinhg System, Nippon Denshoku, Japão). Os materiais medidos variaram discretamente na translucidez e foi mais fácil reproduzir a cor desejada quando a liga de ouro foi utilizada como substrato para todos os materiais.

Kourtis; Tripodakis; Doukoudakis (2004) observaram a influência de 4 ligas metálicas: níquel-cromo (Termobond, Dedecon Co, USA), cromo-cobalto (Wirobond, Bego Co, Alemanha), liga rica em paládio (Cerapal 2, Metaux Precieux / Metalor Co, Suécia) e uma liga de ouro (V-Delta, Metaux Precieux / Metalor Co, Suécia) combinadas com 2 cerâmicas (Omega Vitadur, Vita Zahnfabrik, Alemanha e Ceramco II Silver, Dentisply Ceramco, USA). Cinco discos metálicos (10 x 1mm)

foram preparados para cada liga. Somente cerâmica opaca e de dentina foram aplicadas na cor A3 sobre os discos metálicos. As amostras foram analisadas por um espectrofotômetro de esfera de integração (Datacolor Spectrophotometer Spectraflash 600, Data Color AG, USA). As coordenadas de cromaticidade L* a* b* foram obtidas e æ diferenças de cor (?E) calculadas. As ligas de ouro e pratapaládio causaram um efeito mais amarelado quando comparadas com as ligas de níquel-cromo e cromo-cobalto, sendo que um aumento numérico na coordenada b* foi observado para estas ligas.

Stavridakis et al. (2004) avaliaram o efeito de ligas de paládio na cor de cerâmicas dentais. Três ligas de Pd-Cu-Ga: Spartan Plus (Ivoclar Vivadent, Liechtenstein), Liberty (Heraeus Kulzer, USA) e Freedom Plus (Heraeus Kulzer, USA); 5 ligas de Pd-Ga: Legacy (Heraeus Kulzer, USA), IS85 (Ivoclar Vivadent, Liechtenstein), Protocol (Ivoclar Vivadent, Liechtenstein), Legacy XT (Heraeus Kulzer, USA) e Jelenko N1 (Heraeus Kulzer, USA); uma de Pd-Ag: Super Star (Heraeus Kulzer, USA) e uma de Au-Pd: Olympia (Heraeus Kulzer, USA) foram examinadas através de 6 discos (16 x 1mm) para cada liga. Cerâmica opaca (Omega Vitadur, Vita Zahnfabrik, Alemanha) foi aplicada na espessura final de 0,1mm. Um grupo de discos recebeu cerâmica de dentina na cor B1, na espessura de 0,9mm e o outro grupo recebeu apenas a cerâmica opaca. Um colorímetro (CR-200b, Chroma Meter, Konica Minolta Photo Imaging, USA) foi utilizado para mensurar as coordenadas de cromaticidade L* a* b*. As ligas de Pd-Cu-Ga somente com cerâmica opaca exibiram diferenças de cor estatisticamente significantes, quando comparadas com o grupo que recebeu cerâmica de dentina. Nas ligas de Pd-Aq, diferenças de cor de aproximadamente de 2,8 a 3,7 ? E foram encontradas.

Ishikawa-Nagai et al. (2005) avaliaram a precisão na reprodução da cor de restaurações cerâmicas, utilizando um sistema de produção computadorizado de cores (Sistema CCM), que envolve um programa protótipo gerenciado por dados espectrofotométricos. Dez cores da escala Vitapan 3D Master (Vita Zahnfabrik, Alemanha) foram mensuradas por um sistema de câmara multi-espectral (MSC-2000, Olympus, Japão) em 4 regiões da coroa, desde a área cervical até a incisal. Os registros das coordenadas L* a* b* serviram para confeccionar 3 amostras cerâmicas de cada cor (IPS-Empress2, Ivoclar Vivadent, Liechtenstein), chamadas de amostras CCM. Após, foram mensuradas pela mesma câmara em fundo branco e preto, e os coeficientes de reflexão e absorção foram calculados, usando a teoria de Kubelka-Munk. As cores das amostras CCM e da escala de cores foram comparadas entre si, para que as diferenças de cores (? E) fossem calculadas pelo sistema CIEL*a*b*. Três protesistas avaliaram as amostras CCM por técnicas de percepção e dividiram em 4 categorias: cor idêntica, cor aproximada, cor pobre e nenhuma semelhança na cor. De acordo com os resultados obtidos, a média dos valores das diferenças de cor foram clinicamente aceitáveis nas áreas média e incisal (abaixo de 3,6? E) e inaceitáveis para a área cervical. A análise visual classificou todas as amostras CCM em cor idêntica ou aproximada, sugerindo que esta técnica conseguiu reproduzir a graduação cromática observada nas escalas de cores.

3 PROPOSIÇÃO

O propósito deste estudo foi avaliar quantitativamente o comportamento da cor quando diferentes substratos (resina, núcleos metálicos fundidos acabados e polidos em prata-paládio e núcleos metálicos fundidos acabados e polidos em ouro tipo IV) são restaurados por sistemas cerâmicos (Sistema IPS-Empress e IPS-Empress2 associado à cerâmica Eris para E2) em diferentes espessuras, sendo, desta forma, necessário:

- a) analisar instrumentalmente o comportamento óptico dos sistemas cerâmicos utilizados, observando possíveis alterações de cor devido à presença dos substratos acima citados;
- b) analisar instrumentalmente o comportamento óptico dos sistemas cerâmicos quando empregados em espessuras distintas (1,5; 2; 2,5mm).

4 MATERIAL E MÉTODOS

4.1 MATERIAIS UTILIZADOS

Os materiais, fabricantes e países de origem estão apresentados no QUADRO 2.

Materiais	Fabricantes	Países
Água destilada	Farmácia de manipulação Dermus Ltda	Brasil
Borrachas para metal	Dedeco International Corporation	USA
Cera para escultura	Babinete Ind e Com de Ceras Ltda	Brasil
Cera para escultura VKS	YETI Dental Produkte Gmbh & Co KG	Alemanha
Cerâmica Eris for E2 cor A2	Ivoclar Vivadent AG	Liechtenstein
Condutos de alimentação	Babinete Ind e Com de Ceras Ltda	Brasil
Condutos de alimentação	Kota Ind e Com Ltda	Brasil
Discos de carbeto de silício – UltraThin Multipurpose	National Keystone Products Corporation	USA
Glazer - IPS - Universal Glazing Paste	Ivoclar Vivadent AG	Liechtenstein
Liga ouro tipo IV – Stabilor G	Degussa-Hülls Gmbh & Co KG	Alemanha
Liga de prata-paládio – Palliag M	Degussa-Hülls Gmbh & Co KG	Alemanha
Líquido de modelagem - Glaze and Stain Liquid	Ivoclar Vivadent AG	Liechtenstein
Lixas abrasivas de 800 e 1200	3M Products	USA
Maquiagem - IPS-Empress cor A2/A3/A3,5	Ivoclar Vivadent AG	Liechtenstein
Resina composta Filtek Supreme cor 2AB	3M-Espe Dental Products	USA
Revestimento para fundição MicroFine 1700	Talladium , Inc	USA
Revestimento Speed – IPS-Empress2	Ivoclar Vivadent AG	Liechtenstein
Solução para ultra-som Invex	Ivoclar Vivadent AG	Liechtenstein

Quadro 2 - Materiais utilizados, fabricantes e países de origem.

4.2 DISPOSITIVOS, EQUIPAMENTOS E INSTRUMENTOS UTILIZADOS

Os dispositivos, equipamentos, instrumentos, fabricantes e países de origem estão apresentados no QUADRO 3.

Dispositivos, instrumentos e equipamentos	Fabricantes	Países
Anel de injeção 100 mls	Ivoclar Vivadent AG	Liechtenstein
Anel de silicone para fundição	Servo-Dental Gmbh & Co KG	Alemanha
Balança digital Tanita modelo 1479	Tanita Corporation	Japão
Centrífuga manual	EDG Equipamentos Ltda	Brasil
Condensador para amálgama Edlo 2	Miltex Stainless	Itália
Espátula para enceramento PKT 1	Miltex Stainless	Itália
Espátula para inserção de resina Miltex 70-214	Miltex Stainless	Itália
Espatulador a vácuo Easy Mix	Bego Gmbh & Co KG	Alemanha
Espectrofotômetro Minolta CM 2600D	Minolta Corporation	Japão
Estilete	Stanley S.A.	Brasil
Forno para eliminação de cera Edgcon 3000 3P	EDG Equipamentos Ltda	Brasil
Forno para injeção de cerâmica	Ivoclar Vivadent AG	Liechtenstein
Forno para porcelana	Dentisply Ceramco, Inc	USA
Fotopolimerizador 3M Curing Light 2500	3M Dental Products	USA
Jato de óxido de alumímio Easy Blast	Bego Gmbh & Co KG	Alemanha
Lâminas de vidro para exames laboratoriais	Hermex Ltda	Brasil
Maçarico	EDG Equipamentos Ltda	Brasil
Matriz metálica de aço inoxidável	Particular	Brasil
Micrômetro Mitutoyo 0,25/0,01mm	Mitutoyo Corporation	Japão
Papel fotográfico cinza neutro Kodak	Tiffen Company, Inc	USA
Radiômetro de cura	Gnatus Equipamentos Médico-	Brasil
	odontológicos Ltda	
Ultra-som VitaSoniz II	Vita Zahnfabrik GmbH & Co KG	Alemanha

Quadro 3 - Dispositivos, equipamentos, instrumentos, fabricantes e países de origem.

4.3 MÉTODO

4.3.1 Obtenção dos discos relativos aos substratos

Para que a análise instrumental fosse realizada, discos de diferentes materiais foram obtidos, representando a condição clínica do substrato: (QUADRO 4).

Amostra	Material	Espessura total	Número de amostras
S1	Resina Composta Filtek Supreme cor A2B	3,0mm	1
S2	Liga de prata-paládio (acabado)	1,5mm	1
S3	Liga de prata-paládio (polido)	1,5mm	1
S4	Liga de ouro tipo IV (acabado)	1,5mm	1
S5	Liga de ouro tipo IV (polido)	1,5mm	1

Quadro 4 - Discos relativos aos substratos.

4.3.1.1 Disco de resina composta (S1)

Foi confeccionado um disco de resina composta (Filtek Supreme, 3M-Espe, USA) na cor 2AB, representando um dente vitalizado preparado para receber uma coroa cerâmica. Uma matriz metálica de aço inoxidável, com uma abertura central

circular de 12mm de diâmetro e graduada de 0 a 10mm através de um parafuso lateral, foi idealizada para a obtenção deste disco. (FIG 10 e 11).

Figura 10 – Matriz metálica

Figura 11 – Detalhe da abertura central

A matriz metálica foi calibrada para se obter um disco de 3mm de espessura, e o parafuso lateral travado para que esta espessura fosse mantida. A resina composta foi inserida no orifício do dispositivo com o auxílio de uma espátula de inserção de resina (Miltex 70-214, Miltex Stainless, Itália) e condensada através de um condensador para amálgama (Edlo 2, Miltex Stainless, Itália), para que a mesma se adaptasse perfeitamente no fundo do orifício. Uma camada inicial com 1,5mm de espessura foi inserida e polimerizada com o auxílio de um fotopolimerizador βM Curing Light 2500, 3M Dental Products, USA) previamente calibrado (intensidade de luz de 700W/cm²) por um radiômetro de cura (Gnatus, Brasil). O tempo de polimerização foi de 20s (de acordo com as instruções do fabricante). Uma rova camada de resina foi inserida da mesma forma, até preencher todo o αifício. A superfície externa foi alisada com o auxílio da espátula de inserção (Miltex 70-214, Miltex Stainless, Itália) e uma lâmina de vidro para exames laboratoriais (Hermex

Ltda, Brasil) foi utilizada sobre a resina, sendo apoiada na base do dispositivo metálico para que a superfície externa do disco ficasse completamente lisa. A polimerização foi novamente realizada com o mesmo aparelho por 20s. (FIG. 12 a 17).

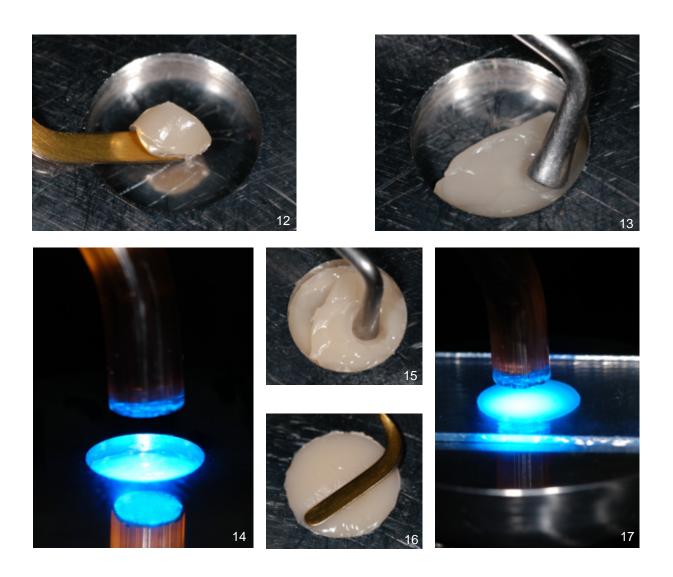


Figura 12 – Inserção da resina composta

Figura 13 – Condensação da resina composta

Figura 14 – Fotopolimerização da primeira camada de resina

Figura 15 - Nova inserção e condensação de resina composta

Figura 16 – Alisamento da última camada

Figura 17 – Lâmina de vidro utilizada durante a segunda fotopolimerização

Para que o disco fosse removido do dispositivo, o botão lateral da matriz foi afrouxado, e o disco conduzido levemente para o interior do dispositivo. Desta forma, os excessos laterais do disco foram facilmente removidos, e este soltou-se facilmente da placa de vidro. (FIG. 19 e 20).

Figura 18 – Excessos removidos

Figura 19 – Disco obtido

Antes de ser definitivamente medido, o disco ficou por 24h em um ambiente com total ausência de luz, para que sua completa polimerização fosse garantida. (VICHI; FERRARI; DAVIDSON, 2000). Depois deste período, ele foi medido com o auxílio de um micrômetro (Mitutoyo 0,25/0,01mm, Japão) para aferir a espessura de 3mm. Esta medição foi realizada em 5 pontos diferentes (todos na área central do disco, envolvendo os 5mm centrais), porque nesta região seriam realizadas as mensurações espectrofotométricas. Como uma discreta diferença na espessura foi observada, o disco foi acabado manualmente com uma lixa abrasiva úmida de granulação fina (1200), com movimentos na forma de 8, apenas no lado que não esteve em contato com a placa de vidro. Novamente, as 5 medições foram realizadas pelo micrômetro até garantir a espessura desejada. (FIG 20 e 21).

Figura 20 – Medição do disco com um micrômetro

Figura 21 – Disco de resina (S1)

4.3.1.2 Discos do substrato metálico em prata-paládio (S2 e S3)

Dois discos de prata-paládio (Palliag M, Degussa-Hülls, Alemanha) representaram um dente desvitalizado reconstruído por um núcleo metálico e preparado para receber uma coroa cerâmica. O disco S2 foi apenas acabado, enquanto que o disco S3 foi acabado e polido. A mesma matriz metálica de aço inoxidável anteriormente citada foi utilizada na obtenção destes discos.

Inicialmente a matriz metálica foi calibrada para se obter um disco de 2mm de espessura, e o parafuso lateral travado para que esta espessura fosse mantida. O enceramento foi realizado com uma espessura maior, para garantir os procedimentos de acabamento e polimento das amostras. Cera para escultura de baixa contração (Babinete Ind e Com de Ceras Ltda, Brasil) foi inserida dentro do orifício com o auxílio de uma espátula para enceramento (PKT1, Miltex Stainless, Itália) até preencher todo o orifício do dispositivo. Antes de remover o disco do dispositivo, sua superfície externa foi regularizada com o auxílio de um estilete

(Stanley S.A., São Paulo, SP, Brasil). O botão lateral do dispositivo foi afrouxado e o disco de cera removido. Dois discos foram obtidos.

Depois, condutos de alimentação pré-fabricados em cera (Cera em fios, Babinete Ind e Com de Ceras Ltda, Brasil) foram unidos na área lateral dos discos. Os 2 discos foram montados em um anel de silicone para fundição (Servo-Dental, Alemanha) de forma que se mantivessem distantes da parede interna do anel cerca de 1mm. Este anel de fundição foi preenchido por revestimento para fundição (MicroFine 1700, Talladium Inc, USA) na proporção de 90g de pó para 22ml de água destilada e espatulado em um espatulador à vácuo (Degussa-Hülls, Alemanha) por 45s. O tempo de presa do material foi respeitado (45min). Após a presa do revestimento, o anel de silicone foi removido, deixando exposto o bloco de revestimento. Um forno para eliminação de cera (Edgcon F3000 3P, Edg Equipamentos, Brasil) foi aquecido até a temperatura de 900°C, para que a remoção total da cera pudesse ser efetuada. Após 2h, o molde de revestimento estava pronto para ser fundido. Uma centrífuga manual (Edg Equipamentos, Brasil) foi preparada para a fundição. Liga de prata-paládio foi aquecida por um maçarico (Edg Equipamentos, Brasil) até que estivesse completamente fluída. O anel de fundição foi posicionado, esperou-se 5min para que fosse levemente resfriado e completou-se a fundição. Após 1h, com o anel completamente frio, o revestimento foi removido e os discos limpos por um jato de óxido de alumínio de 100µm (Easy Blast, Bego, Alemanha), sob pressão de 1bar, até a total remoção do revestimento. Os condutos de alimentação foram cortados por um disco de carbeto de silício (Discos abrasivos, National Keystone Products Co, USA), 1mm aquém da área de união com o disco. (FIG. 22 a 27).

Figura 22 - Discos em cera

Figura 23 – Discos montados em base de silicone

Figura 24 – Anel de silicone posicionado

Figura 25 – Anel preenchido por revestimento

Figura 26 – Fundição realizada em liga de prata-paládio

Figura 27 - Discos obtidos após o corte

O disco (S2) foi apenas acabado manualmente com lixas abrasivas úmidas de granulação média (800) e fina (1200) (3M Products, USA), com movimentos na forma de 8, até obter uma superfície plana. O outro disco (S3) foi inicialmente acabado da mesma forma e depois polido com borrachas para metal (Dedeco Int Corp., USA). (FIG 28 e 29) Após, os 2 discos foram medidos com o auxílio de um micrômetro (Mitutoyo 0,25/0,01mm, Japão) para aferir a espessura de 1,5mm. Esta medição foi realizada em 5 pontos diferentes (todos na área central do disco, envolvendo os 5mm centrais), para viabilizar as mensurações espectrofotométricas.

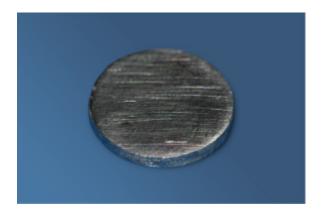


Figura 28 – Disco de prata-paládio acabado (S2)

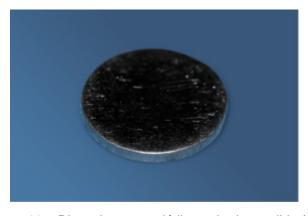


Figura 29 - Disco de prata-paládio acabado e polido (S3)

4.3.1.3 Discos do substrato metálico em liga de ouro tipo IV (S4 e S5)

Dois discos de liga de ouro tipo IV (Stabilor G, Degussa-Hülls, Alemanha) representaram um dente desvitalizado reconstruído por um núcleo metálico e preparado para receber uma coroa cerâmica. O disco S4 foi apenas acabado, enquanto que o disco S5 foi acabado e polido. Todas as etapas de obtenção destes discos foram similares àquelas citadas para os discos S2 e S3, porém, a temperatura do forno para eliminação da cera foi de 750°C em função da liga utilizada. (FIG. 30 e 31).

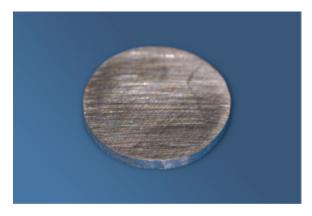


Figura 30 – Disco de liga de ouro tipo IV acabado (S4)

Figura 31 – Disco de liga de ouro tipo IV acabado e polido (S5)

4.3.2 Obtenção dos discos relativos às cerâmicas

Para representar a condição clínica, discos de duas cerâmicas utilizadas em coroas protéticas foram obtidos em três diferentes espessuras: (QUADRO 5).

Amostra	Material	Espessura	Espessura	Espessura	Número de
		infra-estrutura	cerâmica	final	amostras
C1	IPS - Empress cor TC1	-	1,5mm	1,5mm	5
C2	IPS - Empress cor TC1	-	2,0mm	2,0mm	5
C3	IPS - Empress cor TC1	-	2,5mm	2,5mm	5
C4	IPS - Empress 2 cor 100	1,0mm	0,5mm	1,5mm	5
C5	IPS - Empress 2 cor 100	1,0mm	1,0mm	2,0mm	5
C6	IPS - Empress 2 cor 100	1,0mm	1,5mm	2,5mm	5

Quadro 5 - Discos relativos às cerâmicas

4.3.2.1 Discos de cerâmica IPS-Empress (C1, C2 e C3)

Quinze discos de cerâmica injetada reforçada por leucita (IPS-Empress, Ivoclar Vivadent, Liechtenstein), representaram coroas cerâmicas em 3 espessuras distintas: 1,5mm (C1), 2mm (C2) e 2,5mm (C3). A mesma matriz metálica de aço inoxidável anteriormente descrita foi utilizada para estes discos.

Inicialmente a matriz metálica foi calibrada para se obter um disco de 1,5mm de espessura, e o parafuso lateral travado para que esta espessura fosse mantida. Cera para escultura (Cera VKS cinza, YETI Dental Produkte, Alemanha) foi inserida dentro do orifício, com o auxílio de uma espátula de enceramento (PKT1, Miltex Stainless, Itália), até preencher todo o orifício do dispositivo. Antes de remover o disco, sua superfície externa foi regularizada com o auxílio de um estilete (Stanley S.A., São Paulo, SP, Brasil). O botão lateral do dispositivo foi afrouxado e o disco de cera foi removido. Cinco discos foram obtidos para a espessura de 1,5mm. O mesmo processo foi realizado para obter mais 10 discos nas espessuras de 2,0 e de 2,5mm.

Depois, condutos de alimentação pré-fabricados de cera (Sprues de Cera, Kota Ind e Com Ltda, Brasil) foram unidos na área lateral dos 15 discos para viabilizar o processo de injeção. Os discos foram pesados (Balança digital Tanita Modelo 1479, Tanita Corp, Japão) e montados no anel de injeção do sistema (Anel de injeção 100ml, Ivoclar Vivadent, Liechtenstein), de forma que eles se mantivessem distantes da parede interna do anel cerca de 1mm. O anel foi preenchido por revestimento refratário (Speed IPS-Empress2, Ivoclar Vivadent, Liechtenstein) na proporção 90g de pó para 22ml de água destilada e espatulado em um espatulador a vácuo (Easy Mix, Bego, Alemanha) por 45s. O tempo de presa do material foi respeitado (30min). Após a presa do revestimento, o anel foi removido, deixando exposto o bloco de revestimento. Um forno para eliminação de cera (Edgcon F3000 3P, Edg Equipamentos, Brasil) foi aquecido até a temperatura de 850°C, para que a remoção total da cera pudesse ser efetuada. Após 2h, o molde de revestimento estava pronto para ser injetado. (FIG 32 a 34).

Figura 32 – Discos montados no anel de injeção do sistema IPS-Empress

Figura 33 – Preenchimento com revestimento refratário

Figura 34 – Anel preenchido por revestimento

Pastilhas de IPS-Empress na cor TC1 foram pré-aquecidas no mesmo forno (Edgcon F3000 3P, Edg Equipamentos, Brasil), e o molde de revestimento foi conduzido ao forno de injeção do sistema (voclar Vivadent, Liechtenstein). Logo após, as pastilhas foram colocadas em um dispositivo específico, o forno foi ajustado para o programa 1 (IPS-Empress) e o processo de injeção realizado. (FIG 35 a 37).

Figura 35 – Pastilhas de IPS-Empress na cor TC1

Figura 36 – Pré-aquecimento das pastilhas em forno de eliminação de cera

Figura 37 – Forno de injeção do sistema IPS-Empress

Após 1h da conclusão do processo de injeção, o revestimento foi removido e os discos limpos por um jato de óxido de alumínio com 100µm (Easy Blast, Bego, Alemanha), sob pressão de 1bar, até a total remoção do revestimento. Os condutos de alimentação foram cortados por um disco de carbeto de silício fino (Discos UltraThin Multipurpose, National Keystone Products Co, USA), 1mm aquém da área de união com o disco.

Todos os 15 discos foram acabados manualmente com lixas abrasivas úmidas de granulação média (800) e fina (1200) (3M Products, USA), em movimentos na forma de 8, até obter uma superfície plana. Após, os discos foram medidos com o auxílio de um micrômetro (Mitutoyo 0,25/0,01mm, Japão) para aferir as 3 espessuras desejadas (sendo 5 discos para cada espessura). Esta medição foi realizada em 5 pontos diferentes (todos na área central do disco, envolvendo os 5mm centrais), para viabilizar as mensurações espectrofotométricas.

Os quinze discos foram levados ao ultra-som (Ultra-som VitaSonic II, Vita Zahnfabrik, Alemanha), em um recipiente com água destilada por 3min. Após, os discos foram removidos e secos com um papel absorvente e conduzidos a um forno de porcelana (Ceramco, USA), para que uma queima de gordura inicial fosse realizada de acordo com o programa do forno. Posteriormente, a maquiagem dos discos foi realizada na cor TC1 (correspondente à cor A2 da Escala Vita Clássica, Vita Zahnfabrik, Alemanha), através do pigmento (IPS-Empress cor A2/A3/A3,5, Ivoclar Vivadent, Liechtenstein) diluído em um líquido de modelagem (Glaze and Stain Liquid, Ivoclar Vivadent, Liechtenstein), de acordo com o programa do forno. Finalmente, o glazeamento foi realizado com o produto do sistema (IPS-Empress Universal Glazing Paste). Todo o processo de queima de gordura, maquiagem e glazeamento foi realizado em 2h, em uma faixa de temperatura de trabalho de 400 a 850°C. Este processo envolveu apenas 5 discos de cada vez, e a escolha dos discos para este processo foi aleatória. (FIG. 38 e 39).

Figura 38 – Maquiagem dos discos de IPS-Empress

Figura 39 – Discos de cerâmica IPS-Empress nas espessuras 1,5mm (C1); 2,0mm (C2) e 2,5mm (C3)

4.3.2.2 Discos de cerâmica IPS-Empress 2 (C4, C5 e C6)

Quinze discos de cerâmica injetada reforçada por dissilicato de lítio (IPS-Empress2, Ivoclar Vivadent, Liechtenstein), associada a uma cerâmica de cobertura (Eris for E2, Ivoclar Vivadent, Liechtenstein), representaram as coroas cerâmicas em 3 espessuras distintas: 1,5mm (C4), 2mm (C5) e 2,5mm (C6).

A técnica utilizada para a realização destes discos foi a estratificada, ou seja, inicialmente uma infra-estrutura de IPS-Empress2 foi injetada na espessura de 1mm para todos os 15 discos. Cerâmica de cobertura (Eris for E2, Ivoclar Vivadent, Liechtenstein) recobriu as infra-estruturas de IPS-Empress2 até chegar nas 3 espessuras desejadas. (FIG. 40).

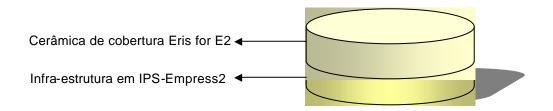


Figura 40 – Esquema de um disco obtido pela técnica estratificada

As 15 infra-estruturas foram obtidas através do enceramento de discos (Cera VKS cinza, YETI Dental Produkte, Alemanha) na espessura de 1mm, com a mesma matriz metálica de aço inoxidável anteriormente descrita. Os discos foram incluídos em revestimento refratário (Speed IPS-Empress2, Ivoclar Vivadent, Liechtenstein) e preparados para a injeção da mesma forma citada para os discos C1, C2 e C3.

Pastilhas de IPS-Empress 2 na cor 100 foram utilizadas para a injeção sem a necessidade de serem pré-aquecidas, e o molde de revestimento foi conduzido ao forno de injeção do sistema (Ivoclar Vivadent, Liechtenstein). Logo após, as pastilhas foram colocadas em um dispositivo específico, o forno foi ajustado para o programa 2 (IPS-Empress2) e o processo de injeção realizado.

Após 1h da conclusão do processo de injeção, o revestimento foi removido e os discos limpos por um jato de óxido de alumínio com 100µm (Easy Blast, Bego, Alemanha), sob pressão de 1bar, até a total remoção do revestimento. Os condutos de alimentação foram cortados por um disco de carbeto de silício fino (Discos UltraThin Multipurpose, National Keystone Products Co, USA) em 1mm aquém da área de união com os discos cerâmicos. Estes foram previamente envolvidos em uma esponja úmida, para evitar um possível aquecimento e trincas da cerâmica durante o corte.

Todos os 15 discos foram acabados manualmente com lixas abrasivas úmidas de granulação média (800) e fina (1200) (3M Products, USA) com movimentos na forma de 8, até obter uma superfície plana. Após, os 2 discos foram calibrados com o auxílio de um micrômetro (Mitutoyo 0,25/0,01mm, Japão) para aferir a espessura desejada (1mm). Esta medição foi realizada em 5 pontos diferentes (todos na área central do disco, envolvendo os 5mm centrais).

Estes discos foram levados ao ultra-som (Ultra-som VitaSonic II, Vita Zahnfabrik, Alemanha) em um recipiente com um líquido específico do sistema (Invex, Ivoclar Vivadent, Liechtenstein) por 15min. Após, os discos foram removidos e secos com um papel absorvente. Cerâmica de cobertura na cor A2 (Eris for E2, Ivoclar Vivadent, Liechtenstein) foi aplicada sobre cada disco de forma tradicional. (FIG. 41). A aplicação foi realizada até se obter as 3 espessuras desejadas (1,5; 2 e 2,5mm). Os discos foram levados a um forno para porcelana (Ceramco, USA), para que a sinterização da cerâmica fosse realizada. Após a aplicação desta cerâmica de

cobertura, os discos foram acabados manualmente e calibrados da mesma forma anteriormente citada.

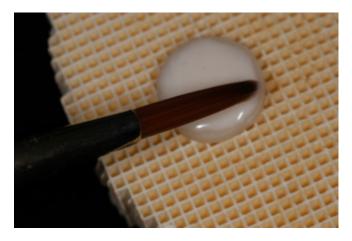


Figura 41 – Aplicação da cerâmica de cobertura Eris para E2

Posteriormente, os discos foram glazeados com o glazer do sistema (IPS-Empress Universal Glazing Paste). Todo o processo de sinterização da cerâmica e glazeamento foi realizado em uma faixa de temperatura de trabalho de 400 a 700°C. Este processo envolveu apenas 5 discos de cada vez, e a escolha dos discos foi aleatória. (FIG. 42)



Figura 42 – Discos de cerâmica IPS-Empress2 nas espessuras 1,5mm (C4); 2,0mm (C5) e 2,5mm (C6)

4.3.3 Análise instrumental

Após serem obtidos (5 discos referentes aos substratos e 30 discos referentes às cerâmicas), todos os discos foram limpos em álcool etílico hidratado 92,8° em ultra-som por 5min (Ultra-som VitaSonic II, Vita Zahnfabrik, Alemanha) e acondicionados em sacos plásticos identificados para cada disco.

As medições espectrofotométricas das amostras e suas associações foram realizadas no Laboratório de Processamento Mineral (LAPROM) da Universidade Federal do Rio Grande do Sul, com o auxílio de um espectrofotômetro de esfera de integração revestida por sulfato de bário (Minolta CM 2600D, Japão). A fonte de luz deste aparelho consiste de três lâmpadas de xenônio que permitem que a mensuração seja simultaneamente realizada com três diferentes iluminantes, incluindo ou não a luz ultravioleta (UV) e o brilho (componente especular inclusa – SCI)³. Cada mensuração espectrofotométrica é efetuada em aproximadamente 1,5s.

Este espectrofotômetro possui duas janelas de observação: 10mm e 5mm. A janela utilizada neste estudo foi a de 5mm para que 5 mensurações pudessem ser aleatoriamente realizadas no centro do disco, coincidindo com a área previamente aferida pelo micrômetro.

-

³ Fração da luz refletida que não interage com o sólido e é identificada pela visão como brilho. Fonte – Petter e Gliese, 2000

4.3.3.1 Primeira etapa da análise instrumental

A sequência do teste na sua primeira etapa foi a seguinte:

- a) calibragem inicial do aparelho com o auxílio de uma placa de calibração branca (Minolta CM 2600D, Japão);
- b) cinco mensurações aleatórias realizadas nos 5mm centrais do disco S1
 (resina composta) sobre a placa de calibração branca do aparelho;
- c) nova calibragem do aparelho;
- d) disco S2 (prata-paládio acabado) mensurado da mesma forma que o S1;
- e) nova calibragem do aparelho;
- f) disco S3 (prata-paládio acabado e polido) mensurado da mesma forma que o S1;
- g) nova calibragem do aparelho;
- h) disco S4 (liga de ouro acabado) mensurado da mesma forma que o S1;
- i) nova calibragem do aparelho;
- j) disco S5 (liga de ouro acabado e polido) mensurado da mesma forma que o S1;
- I) nova calibragem do aparelho;
- m) vinte e cinco mensurações aleatórias realizadas nos 5mm centrais dos 5 discos C1 (Cerâmica IPS-Empress, 1,5mm de espessura), sendo 5 mensurações para cada disco. Os discos foram posicionados sobre um papel fotográfico cinza neutro (Kodac Gray Cards, Tiffen Company, USA). Este recurso foi utilizado de acordo com Kuehni e Marcus (1979), Vichi;

Ferrari; Davidson (2000) e Paravina (2002), para que nenhuma interferência de fundo ocorresse durante as leituras das amostras cerâmicas (objetos translúcidos);

- n) nova calibragem do aparelho;
- 0) cinco discos C4 (Cerâmica IPS-Empress 2 + Eris; 1,5mm de espessura),mensurados da mesma forma que os discos C1.

Os 5 substratos foram medidos individualmente para viabilizar a análise da homogeneidade de suas superfícies, que está descrita no capítulo dos resultados.

Os únicos discos cerâmicos medidos individualmente foram os discos C1 e C4, porque suas médias obtidas das coordenadas L* a* b* foram utilizadas como padrão, devido a estas espessuras serem as indicadas pelo fabricante. (IPS-Empress: 1,5mm e IPS-Empress2 + Eris: 1,5mm).

4.3.3.2 Segunda etapa da análise instrumental

Nesta etapa, associações experimentais entre um substrato e os 5 discos de espessura e cerâmicas correspondentes foram realizadas de acordo com o QUADRO 6.

ASSOCIAÇÕES EXPERIMENTAIS	ASSOCIAÇÕES EXPERIMENTAIS
S1 + C1 (a,b,c,d,e)	S3 + C4 (a,b,c,d,e)
S1 + C2 (a,b,c,d,e)	S3 + C5 (a,b,c,d,e)
S1 + C3 (a,b,c,d,e)	S3 + C6 (a,b,c,d,e)
S1 + C4 (a,b,c,d,e)	S4 + C1 (a,b,c,d,e)
S1 + C5 (a,b,c,d,e)	S4 + C2 (a,b,c,d,e)
S1 + C6 (a,b,c,d,e)	S4 + C3 (a,b,c,d,e)
S2 + C1 (a,b,c,d,e)	S4 + C4 (a,b,c,d,e)
S2 + C2 (a,b,c,d,e)	S4 + C5 (a,b,c,d,e)
S2 + C3 (a,b,c,d,e)	S4 + C6 (a,b,c,d,e)
S2 + C4 (a,b,c,d,e)	S5 + C1 (a,b,c,d,e)
S2 + C5 (a,b,c,d,e)	S5 + C2 (a,b,c,d,e)
S2 + C6 (a,b,c,d,e)	S5 + C3 (a,b,c,d,e)
S3 + C1 (a,b,c,d,e)	S5 + C4 (a,b,c,d,e)
S3 + C2 (a,b,c,d,e)	S5 + C5 (a,b,c,d,e)
S3 + C3 (a,b,c,d,e)	S5 + C6 (a,b,c,d,e)

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.
- a, b, c, d, e: Número de amostras por cerâmicas

Quadro 6 - Associações entre discos dos substratos, cerâmicas e espessuras

Durante todas as associações, os discos de cerâmica ficaram sobrepostos aos discos do substrato e 5 mensurações (sempre no centro do disco) foram realizadas aleatoriamente para cada associação. De acordo com Dozic et al. (2003), entre os discos associados foi utilizada uma gota de água destilada (índice de refração próximo de 1,7), para que nenhum eventual espaço permanecesse entre os discos, e um bom contato óptico estivesse presente durante a mensuração espectrofotométrica, diminuindo a possibilidade de perda de luz pela extremidade dos discos (efeito conhecido por *edge-loss*). (FIG. 43)

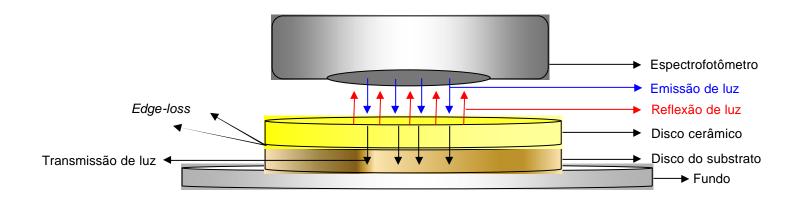


Figura 43 – Efeito *edge-loss*.

Fonte - Adaptado de Dozic et al., 2003

O mesmo operador realizou todas as 775 mensurações, que foram executadas com uma geometria de medição D/8°, iluminação difusa a 10°, comprimento de onda de 360 a 740nm (intervalo de 10nm), com a componente especular inclusa⁴ (SCI) e exclusa⁵ (SCE), cuidando para que a abertura de 5mm se mantivesse muito próxima aos discos. Os três iluminantes selecionados foram: D65, A e F6. Os dados obtidos foram registrados em um computador conectado ao espectrofotômetro através do programa Spectra Match Minolta System v.3.4.1 (Cyber Chrome Inc., USA).

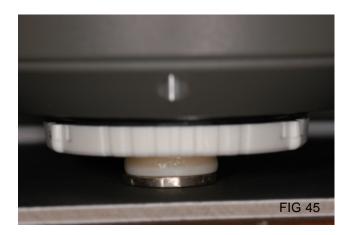
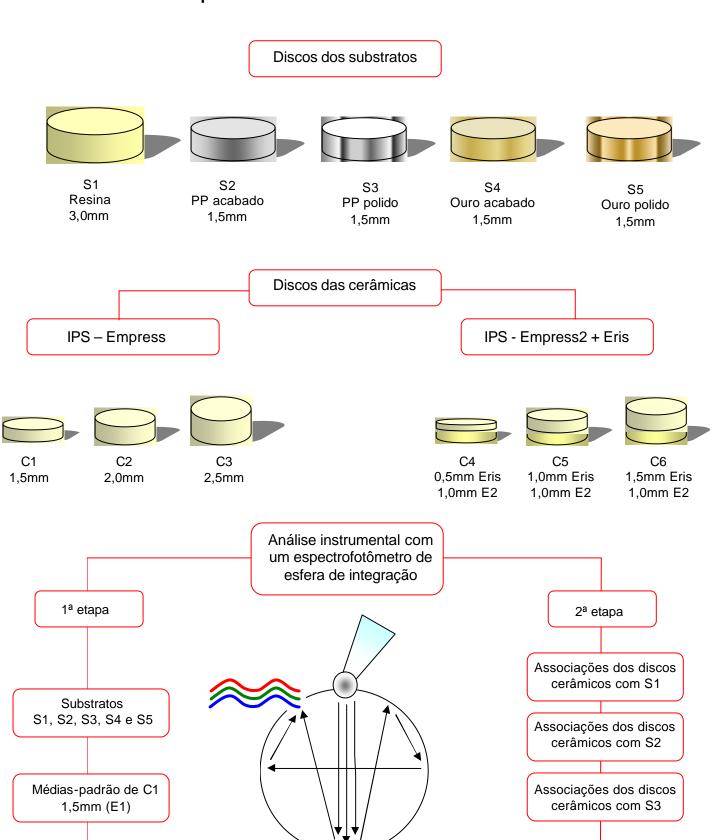



Figura 44 – Espetrofotômetro Minolta CM 2600D, Japão
Figura 45 – Teste instrumental

Fração da luz refletida que desconsidera o brilho superficial.
 Fonte – Petter e Gliese, 2000

4.3.4 Síntese do experimento

⁴ Fração da luz refletida que não interage com o sólido e é identificada pela visão como brilho.

Médias-padrão de C4 1,5mm (E2 + Eris) Associações do cerâmicos c

Associações dos discos cerâmicos com S5

Resultadon

5 RESULTADOS

Os valores espectrofotométricos deste estudo estão apresentados em coordenadas L* a* b* do sistema CIEL*a*b*. Apenas o iluminante D65 (correspondente à luz do dia) e a componente especular inclusa (SCI) foram considerados nos nossos resultados (KUEHNI E MARCUS,1979; SEGUI; JOHNSTON; O'BRIEN, 1989; DOZIC et al., 2003).

5.1 HOMOGENEIDADE DOS SUBSTRATOS

A homogeneidade dos substratos foi calculada pelo índice de flutuação da cor⁶ (?S). Este índice demonstrou que todos os substratos utilizados neste trabalho comportaram-se como amostras homogêneas quanto à cor. Seu cálculo é realizado comparando as medidas entre si, sendo que, para cada 5 mensurações realizadas, 10 associações são possíveis (1x2, 1x3, 1x4, 1x5, 2x3, 2x4, 2x5, 3x4, 3x5, 4x5).

As 5 mensurações e médias obtidas para o substrato 1 estão apresentadas na TAB. 1. O índice de flutuação da cor para este substrato resultou em 0,10? S (TAB. 2, APÊNDICE A).

Tabela 1 - Mensurações e médias do substrato resina (S1)

S1	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Médias	Desvio- padrão
L*	60,0019	60,0218	59,8639	60,0284	59,9109	59,96538	0,07
a*	1,812	1,7867	1,8362	1,8264	1,8267	1,8176	0,02
b*	8,6325	8,6031	8,6942	8,6323	8,6352	8,63946	0,03

- L*: coordenada de luminosidade Sistema CIEL*a*b*
- a*: coordenada de cromaticidade a* Sistema CIEL*a*b*
- b*: coordenada de cromaticidade b* Sistema CIEL*a*b*

As 5 mensurações e médias obtidas para o substrato 2 estão apresentadas na TAB. 3. O índice de flutuação da cor para este substrato resultou em 0,50? S (TAB. 4, APÊNDICE A).

Tabela 3 - Mensurações e médias do substrato prata-paládio acabado (S2)

S2	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Médias	Desvio- padrão
L*	74,0971	74,0668	74,5543	74,9796	74,5477	74,4491	0,38
a*	2,2114	2,2229	1,9876	2,026	1,9106	2,0717	0,14
b*	7,1109	7,0738	6,9485	6,9634	6,9549	7,0103	0,08

• L*: coordenada de luminosidade - Sistema CIEL*a*b*

Indíce que quantifica a variabilidade da cor na superfície de um objeto. Fonte – Kuehni e Marcus, 1979

- a*: coordenada de cromaticidade a* Sistema CIEL*a*b*
- b*: coordenada de cromaticidade b* Sistema CIEL*a*b*

As 5 mensurações e médias obtidas para o substrato 3 estão apresentadas na TAB. 5. O índice de flutuação da cor para este substrato resultou em 0,27? S (TAB. 6, APÊNDICE A).

Tabela 5 - Mensurações e médias do substrato prata-paládio acabado e polido (S3)

	S3	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Médias	Desvio- padrão
_	L*	79,5575	79,4214	79,5822	79,6243	80,0333	79,64374	0,23
	a*	2,3938	2,3983	2,3329	2,356	2,3279	2,36178	0,03
	b*	7,6933	7,7042	7,6758	7,7411	7,5861	7,6801	0,06

- L*: coordenada de luminosidade Sistema CIEL*a*b*
- a*: coordenada de cromaticidade a* Sistema CIEL*a*b*
- b*: coordenada de cromaticidade b* Sistema CIEL*a*b*

As 5 mensurações e médias obtidas para o substrato 4 estão apresentadas na TAB. 7. O índice de flutuação da cor para este substrato resultou em 0,82? S (TAB. 8, APÊNDICE B).

Tabela 7 - Mensurações e médias do substrato liga de ouro tipo IV acabado (S4)

S4	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Médias	Desvio- padrão
L*	75,2141	76,2992	75,9509	75,464	76,4932	75,88428	0,54
a*	4,3476	4,2825	4,4598	4,7674	4,8423	4,53992	0,25
b*	14,7539	14,4788	14,6157	14,9473	14,6395	14,68704	0,17

- L*: coordenada de luminosidade Sistema CIEL*a*b*
- a*: coordenada de cromaticidade a* Sistema CIEL*a*b*
- b*: coordenada de cromaticidade b* Sistema CIEL*a*b*

As 5 mensurações e médias obtidas para o substrato 5 estão apresentadas na TAB. 9. O índice de flutuação da cor para este substrato resultou em 0,23? S (TAB. 10, APÊNDICE B).

Tabela 9 - Mensurações e médias do substrato liga de ouro tipo IV acabado e polido (S5)

S5	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Médias	Desvio- padrão
L*	84,9229	84,9842	84,6905	85,0228	84,9963	84,92334	0,13
a*	4,1034	4,1108	4,228	4,3124	4,2788	4,20668	0,09
b*	14,7177	14,7866	14,713	14,8599	14,8034	14,77612	0,06

- L*: coordenada de luminosidade Sistema CIEL*a*b*
- a*: coordenada de cromaticidade a* Sistema CIEL*a*b*
- b*: coordenada de cromaticidade b* Sistema CIEL*a*b*

5.2 MÉDIAS-PADRÃO DE C1 e C4

Para que as comparações com as associações experimentais pudessem ser realizadas, 2 cerâmicas (5 discos para cada cerâmica) foram mensuradas para obtermos as médias-padrão⁷. Os 5 discos cerâmicos de C1 foram medidos em 5 pontos diferentes, resultando em 25 coordenadas L* a* b*. O mesmo procedimento foi realizado para os 5 discos cerâmicos de C4.

-

Médias de um grupo experimental que será considerado como o controle do estudo. Fonte – Armitage; Berry; Mattheus, 2002.

As mensurações obtidas para cada disco cerâmico C1 estão apresentadas nas TAB. 11 a 15, APÊNDICE C. As 5 médias das mensurações obtidas para C1 e as médias-padrão estão disponíveis a seguir:

Tabela 16 - Médias dos cinco discos e médias-padrão da cerâmica IPS-Empress

com espessura de 1,5mm (C1)

_	com cape	233414 GC 1	,onin (O1)					
		C1a	C1b	C1c	C1d	C1e	Médias- padrão	Desvio- padrão
	L*	61,3888	61,35012	59,90762	59,28666	61,35602	60,65784	0,99
	a*	0,58226	0,56012	0,53286	0,50362	0,57032	0,549836	0,03
	b*	12,43034	12,53814	12,12416	11,5959	12,29688	12,19708	0.37

- L*: coordenada de luminosidade Sistema CIEL*a*b*
- a*: coordenada de cromaticidade a* Sistema CIEL*a*b*
- b*: coordenada de cromaticidade b* Sistema CIEL*a*b*

As mensurações obtidas para cada disco cerâmico C4 estão apresentadas nas TAB. 17 a 21, APÊNDICE D. As 5 médias das mensurações obtidas para C4 e as médias-padrão estão disponíveis a seguir:

Tabela 22 - Médias dos cinco discos e médias-padrão da cerâmica IPS-Empress2 +

Eris na espessura de 1,5mm (C4)

	C4a	C4b	C4c	C4d	C4e	Médias- padrão	Desvio- padrão
L*	66,52294	66,29608	63,5877	64,55862	64,74006	65,14108	1,24
a*	0,34258	0,56998	1,47154	1,06042	0,50066	0,789036	0,47
b*	13,25004	13,07582	14,12328	13,8572	12,7695	13,41517	0,56

- L*: coordenada de luminosidade Sistema CIEL*a*b*
- a*: coordenada de cromaticidade a* Sistema CIEL*a*b*
- b*: coordenada de cromaticidade b* Sistema CIEL*a*b*

5.3 MÉDIAS DAS ASSOCIAÇÕES EXPERIMENTAIS

5.3.1 Médias das associações ao substrato resina (S1)

As mensurações obtidas pelo espectrofotômetro em coordenadas L* a* b* para as associações S1+C1; S1+C2; S1+C3; S1+C4; S1+C5 e S1+C6 estão disponíveis nas TAB. 23 a 28, APÊNDICE E a G. As médias destas associações estão na TAB. 29:

Tabela 29 - Médias L* a* b* das associações com o substrato resina (S1)

Tabela 29 - Medias L* a* b* d			
Associações	L*	a*	b*
S1+C1a	64,17078	1,73980	13,35702
S1+C1b	63,98638	1,77466	13,69530
S1+C1c	64,10332	1,70342	13,21662
S1+C1d	64,83434	1,53072	12,64688
S1+C1e	64,45056	1,67310	13,41170
S1+C2a	65,63080	1,20794	12,57726
S1+C2b	65,08560	1,42090	13,45724
S1+C2c	65,89846	1,24288	12,90284
S1+C2d	66,99556	1,46002	14,55724
S1+C2e	66,39948	1,03574	11,45762
S1+C3a	66,34094	1,03256	12,83044
S1+C3b	65,81916	1,36264	14,29810
S1+C3c	66,53258	0,90654	12,06752
S1+C3d	65,90328	1,19294	13,05054
S1+C3e	64,82466	1,40032	14,20580
S1+C4a	69,51576	0,58652	13,70240
S1+C4b	68,78216	0,83768	13,33556
S1+C4c	66,12122	1,91292	14,52676
S1+C4d	67,27136	1,24542	13,96682
S1+C4e	67,64260	0,75840	12,93320
S1+C5a	66,02186	1,91212	15,11660
S1+C5b	66,53872	2,13736	15,90538
S1+C5c	66,51538	2,04526	15,36996
S1+C5d	66,20216	2,01266	15,29266
S1+C5e	65,16128	2,13036	15,21536
S1+C6a	64,72114	2,87422	14,59566
S1+C6b	65,50654	2,78376	14,67608
S1+C6c	64,15038	3,08714	14,94950
S1+C6d	64,42094	2,98520	14,51304
S1+C6e	63,84426	2,91564	14,59368

- S1: Disco de resina composta
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.
- a, b, c, d, e: Número de amostras por cerâmicas

5.3.2 Médias das associações ao substrato prata-paládio acabado (S2)

As mensurações obtidas pelo espectrofotômetro para as associações S2+C1; S2+C2; S2+C3; S2+C4; S2+C5 e S2+C6 estão disponíveis nas TAB. 30 a 35, APÊNDICE H a J. As médias destas associações estão na TAB. 36:

Tabela 36 - Médias L* a* b* das associações com o substrato prata-paládio acabado (S2) (continua)

(02)			(continua)	
Associações	L*	a*	b*	
S2+C1a	64,60888	1,36804	13,24368	
S2+C1b	64,39098	1,28922	13,14778	
S2+C1c	64,66238	1,23296	13,13514	
S2+C1d	65,10130	1,14938	12,52924	
S2+C1e	64,87238	1,29620	13,34052	
S2+C2a	65,94292	1,01424	12,67162	
S2+C2b	65,46454	0,96008	12,70358	
S2+C2c	65,63090	0,94534	12,67912	
S2+C2d	67,02352	1,07966	14,07896	
S2+C2e	65,90036	0,75554	11,94720	
S2+C3a	66,34444	0,78134	12,65862	
S2+C3b	65,86198	1,03504	14,02466	
S2+C3c	66,55864	0,62164	12,02922	
S2+C3d	66,23912	0,94106	13,25452	
S2+C3e	64,82620	1,08650	14,00304	
S2+C4a	70,88984	0,98000	15,30248	
S2+C4b	68,98386	0,77446	13,71986	
S2+C4c	66,53660	1,71342	14,72872	
S2+C4d	67,62590	1,29744	14,58718	
S2+C4e	67,56088	0,77098	13,36390	

Tabela 36 - Médias L* a* b* das associações com o substrato prata-paládio acabado (S2) (conclusão)

()			(00.10.00.0)
Associações	L*	a*	b*
S2+C5a	66,20768	1,80604	15,19716
S2+C5b	66,28000	2,06566	15,93040
S2+C5c	67,30374	2,43722	16,54888
S2+C5d	66,36266	2,07638	15,61376
S2+C5e	65,45860	2,31780	15,81040
S2+C6a	64,72970	2,84068	14,64232
S2+C6b	65,30590	2,67282	14,72544
S2+C6c	64,21640	2,96186	14,80366
S2+C6d	63,91640	2,99046	14,89946
S2+C6e	63,60122	2,86672	14,72452

- S2: Disco de prata-paládio acabado
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.
- a, b, c, d, e: Número de amostras por cerâmicas

5.3.3 Médias das associações ao substrato prata-paládio acabado e polido(S3)

As mensurações obtidas pelo espectrofotômetro para as associações S3+C1; S3+C2; S3+C3; S3+C4; S3+C5 e S3+C6 estão disponíveis nas TAB. 37 a 42, APÊNDICE K a M. As médias destas associações estão na TAB. 43:

Tabela 43 - Médias L* a* b* das associações com o substrato prata-paládio acabado

e polido (S3)

e polido (S3)			
Associações	L*	a*	b*
S3+C1a	65,82058	1,77016	14,16324
S3+C1b	65,84602	1,72552	14,41506
S3+C1c	65,80358	1,58126	14,00734
S3+C1d	65,89444	1,43198	13,25814
S3+C1e	67,73822	1,67540	15,23774
S3+C2a	66,02298	1,16200	13,31296
S3+C2b	65,91928	1,29998	13,54512
S3+C2c	66,36220	1,13312	13,17062
S3+C2d	67,56544	1,36340	14,53374
S3+C2e	67,84304	1,22136	13,12948
S3+C3a	67,50722	1,12488	13,62442
S3+C3b	66,70874	1,27946	14,19480
S3+C3c	66,78320	0,90110	12,36970
S3+C3d	66,08126	1,17748	13,35682
S3+C3e	65,07108	1,48856	15,09798
S3+C4a	70,89306	1,10562	15,22058
S3+C4b	69,89964	0,83892	13,77094
S3+C4c	66,96250	2,05592	15,27022
S3+C4d	67,93996	1,54596	15,03786
S3+C4e	68,14946	0,99532	13,76558
S3+C5a	66,41070	2,15740	15,68252
S3+C5b	66,60410	2,35482	16,39670
S3+C5c	67,34086	2,63470	16,58314
S3+C5d	66,35784	2,32846	15,82434
S3+C5e	65,63014	2,39334	15,84582
S3+C6a	64,65436	3,01684	14,97306
S3+C6b	65,49626	2,84580	14,69618
S3+C6c	64,50148	3,42062	15,52782
S3+C6d	64,36676	3,09794	14,70774
S3+C6e	64,07762	3,12498	14,97486

- S3: Disco de prata-paládio polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.
- a, b, c, d, e: Número de amostras por cerâmicas

5.3.4 Médias das associações ao substrato liga de ouro acabado (S4)

As mensurações obtidas pelo espectrofotômetro para as associações S4+C1; S4+C2; S4+C3; S4+C4; S4+C5 e S4+C6 estão disponíveis nas TAB. 44 a 49, APÊNDICE N a P. As médias destas associações estão na TAB. 50:

Tabela 50 - Médias L* a* b* das associações com o substrato liga de ouro tipo IV acabado (S4)

Associações	L*	a*	b*
S4+C1a	66,36804	2,55640	15,32924
S4+C1b	65,18884	2,58898	15,07662
S4+C1c	65,52160	2,58472	15,01550
S4+C1d	66,44372	2,36564	14,41756
S4+C1e	65,80198	2,49574	14,90698
S4+C2a	66,20966	1,74500	13,42078
S4+C2b	66,03498	1,91452	13,97534
S4+C2c	65,94224	1,79666	13,56554
S4+C2d	67,47780	1,97254	15,61574
S4+C2e	67,44568	1,60552	12,76030
S4+C3a	66,94690	1,33176	13,03190
S4+C3b	66,59310	1,89738	15,73112
S4+C3c	66,97040	1,29176	12,91010
S4+C3d	66,71042	1,61386	14,13808
S4+C3e	64,99236	1,75620	14,74668
S4+C4a	70,71348	1,39822	15,25234
S4+C4b	70,18338	1,19954	13,78992
S4+C4c	66,64648	2,62242	15,48318
S4+C4d	67,75286	1,91226	14,91060
S4+C4e	67,72584	1,62532	14,46456
S4+C5a	66,25412	2,49608	15,94562
S4+C5b	66,58202	2,54418	16,26034
S4+C5c	66,89484	2,37736	15,94750
S4+C5d	66,23152	2,73132	16,42600
S4+C5e	65,23478	2,74596	16,04194
S4+C6a	64,79912	3,06052	14,76844
S4+C6b	65,59412	3,02408	15,18858
S4+C6c	64,21730	3,30024	15,16024
S4+C6d	64,24894	3,17750	14,79858
S4+C6e	63,72586	3,09614	14,78824

- S4: Disco de liga de ouro tipo IV acabado
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.
- a, b, c, d, e: Número de amostras por cerâmicas

5.3.5 Médias das associações ao substrato liga de ouro acabado (S5)

As mensurações obtidas pelo espectrofotômetro para as associações S5+C1; S5+C2; S5+C3; S5+C4; S5+C5 e S5+C6 estão disponíveis nas TAB. 51 a 56, APÊNDICE Q a S. As médias destas associações estão na TAB. 57:

Tabela 57 - Médias L* a* b* das associações com o substrato liga de ouro tipo IV acabado e polido (S5) (continua)

adabado e polido	(00)		(ooritii ida)
Associações	L*	a*	b*
S5+C1a	67,79318	3,55778	17,14736
S5+C1b	67,28338	3,50154	17,19758
S5+C1c	67,48070	3,36600	16,62984
S5+C1d	68,01278	3,21442	16,35232
S5+C1e	67,82632	3,43176	16,95518
S5+C2a	67,53684	2,50260	14,92938
S5+C2b	67,11200	2,66178	15,90538
S5+C2c	67,68976	2,52940	15,27582
S5+C2d	68,51578	2,71126	16,84612
S5+C2e	68,56736	2,25564	13,95366
S5+C3a	67,34222	2,08062	14,9106
S5+C3b	67,04614	2,48484	16,34806
S5+C3c	67,74458	1,90388	14,52120
S5+C3d	67,36426	2,19160	15,02856
S5+C3e	65,87674	2,43722	16,07844
S5+C4a	70,89780	2,06916	15,60172
S5+C4b	70,25308	2,23182	15,33656
S5+C4c	68,21484	3,35550	16,83162
S5+C4d	68,60278	2,70294	16,10552
S5+C4e	68,77598	2,39742	15,60716

Tabela 57 - Médias L* a* b* das associações com o substrato liga de ouro tipo IV acabado e polido (S5) (conclusão)

	(/		(
Associações	L*	a*	b*
S5+C5a	67,10326	2,92406	16,48282
S5+C5b	67,35012	3,15334	17,19104
S5+C5c	67,18482	3,06870	16,55660
S5+C5d	67,08762	3,27714	16,93298
S5+C5e	65,26734	3,24214	16,68600
S5+C6a	64,95244	3,59846	15,45760
S5+C6b	65,78900	3,56986	15,83692
S5+C6c	64,63484	3,83786	15,84134
S5+C6d	64,08496	3,48808	15,29938
S5+C6e	64,64232	3,59212	15,23958

- S5: Disco de liga de ouro tipo IV polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.
- a, b, c, d, e: Número de amostras por cerâmicas

5.4 CÁLCULO DAS DIFERENÇAS DE COR

Uma vez obtidas todas as médias das associações experimentais, o cálculo das diferenças de cor (?E) foi realizado individualmente para cada cerâmica utilizada (IPS-Empress e IPS-Empress2 + Eris).

Para a cerâmica IPS-Empress nas espessuras 1,5; 2,0 e 2,5mm, o cálculo foi realizado da seguinte forma: as médias-padrão das coordenadas de C1 (L*: 60,65784; a*: 0,549836; b*: 12,19708) foram comparadas com as demais médias obtidas nas associações de C1, C2 e C3 com S1, S2, S3, S4 e S5 através da seguinte fórmula:

? E =
$$((?L^*)^2 + (?a^*)^2 + (?b^*)^2) \frac{1}{2}$$

Onde:

? E = Unidade de diferença de cor

 $?L^* = Diferença entre L^* (1) e L^* (2)$

 $?a^* = Diferença entre a^* (1) e a^* (2)$

 $?b^* = Diferença entre b^* (1) e b^* (2)$

Em nosso estudo, L* a* b* (1) são as médias das coordenadas do padrão, enquanto que L* a* b* (2) correspondem às médias das coordenadas das associações experimentais. Os cálculos de ?E, ?L*, ?a* e ?b* para a cerâmica IPS-Empress estão disponíveis na TAB. 58, APÊNDICE T. As diferenças de cor (?E) estão na TAB. 59:

Tabela 59 - Diferenças de cor (? E) obtidas para a cerâmica IPS-Empress

Padrão + associações	?E (diferenças de cor)
C1 + S1/C1 média (1,5mm)	3,99
C1 + S1/C2 média (2,0mm)	5,54
C1 + S1/C3 média (2,5mm)	5,46
C1 + S2/C1 média (1,5mm)	4,24
C1 + S2/C2 média (2,0mm)	5,42
C1 + S2/C3 média (2,5mm)	5,48
C1 + S3/C1 média (1,5mm)	6,03
C1 + S3/C2 média (2,0mm)	6,28
C1 + S3/C3 média (2,5mm)	6,10
C1 + S4/C1 média (1,5mm)	6,22
C1 + S4/C2 média (2,0mm)	6,38
C1 + S4/C3 média (2,5mm)	6,29
C1 + S5/C1 média (1,5mm)	8,91
C1 + S5/C2 média (2,0mm)	8,20
C1 + S5/C3 média (2,5mm)	7,41

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

As médias finais das coordenadas L* a* e b* e das diferenças de luminosidade (?L*), diferenças de cor da coordenada de cromaticidade a* (?a*) e da coordenada de cromaticidade b* (?b*) estão apresentadas nas TAB. 60 a 62.

Tabela 60 - Diferenças de luminosidade (?L*) obtidas para a cerâmica IPS-Empress

Padrão + associações	Média do padrão	Médias das coordenadas L*	?L*
C1 + S1/C1 média	60,66	64,31	-3,65
C1 + S1/C2 média	60,66	66,00	-5,34
C1 + S1/C3 média	60,66	65,88	-5,23
C1 + S2/C1 média	60,66	64,73	-4,07
C1 + S2/C2 média	60,66	65,99	-5,33
C1 + S2/C3 média	60,66	65,97	-5,31
C1 + S3/C1 média	60,66	66,22	-5,56
C1 + S3/C2 média	60,66	66,74	-6,08
C1 + S3/C3 média	60,66	66,43	-5,77
C1 + S4/C1 média	60,66	65,86	-5,21
C1 + S4/C2 média	60,66	66,62	-5,96
C1 + S4/C3 média	60,66	66,44	-5,78
C1 + S5/C1 média	60,66	67,68	-7,02
C1 + S5/C2 média	60,66	67,88	-7,23
C1 + S5/C3 média	60,66	67,07	-6,42

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

Tabela 61 - Diferenças de cor da coordenada de cromaticidade a* (?a*) obtidas para a cerâmica IPS-Empress

Padrão + associações	Média do padrão	Médias das coordenadas a*	?a*
C1 + S1/C1 média	0,55	1,68	-1,13
C1 + S1/C2 média	0,55	1,27	-0,72
C1 + S1/C3 média	0,55	1,18	-0,63
C1 + S2/C1 média	0,55	1,27	-0,72
C1 + S2/C2 média	0,55	0,95	-0,40
C1 + S2/C3 média	0,55	0,89	-0,34
C1 + S3/C1 média	0,55	1,64	-1,09
C1 + S3/C2 média	0,55	1,23	-0,69
C1 + S3/C3 média	0,55	1,19	-0,64
C1 + S4/C1 média	0,55	2,52	-1,97
C1 + S4/C2 média	0,55	1,81	-1,26
C1 + S4/C3 média	0,55	1,58	-1,03
C1 + S5/C1 média	0,55	3,41	-2,86
C1 + S5/C2 média	0,55	2,53	-1,98
C1 + S5/C3 média	0,55	2,22	-1,67

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

Tabela 62 - Diferenças de cor da coordenada de cromaticidade b* (?b*) obtidas para a cerâmica IPS-Empress

Padrão + associações	Média do padrão	Médias das coordenadas b*	?b*
C1 + S1/C1 média	12,20	13,26	-1,07
C1 + S1/C2 média	12,20	12,99	-0,79
C1 + S1/C3 média	12,20	13,29	-1,09
C1 + S2/C1 média	12,20	13,08	-0,88
C1 + S2/C2 média	12,20	12,82	-0,62
C1 + S2/C3 média	12,20	13,19	-1,00
C1 + S3/C1 média	12,20	14,21	-2,01
C1 + S3/C2 média	12,20	13,54	-1,34
C1 + S3/C3 média	12,20	13,79	-1,53
C1 + S4/C1 média	12,20	14,95	-2,75
C1 + S4/C2 média	12,20	13,87	-1,67
C1 + S4/C3 média	12,20	14,11	-1,91
C1 + S5/C1 média	12,20	16,86	-4,66
C1 + S5/C2 média	12,20	15,38	-3,18
C1 + S5/C3 média	12,20	15,38	-3,18

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

O mesmo cálculo foi efetuado para a cerâmica IPS-Empress2 + Eris nas espessuras de 1,5; 2,0 e 2,5mm. As médias-padrão utilizadas foram das coordenadas de C4 (L*: 65,14108; a*: 0,789036; b*: 13,41517) comparadas com as demais médias obtidas nas associações de C4, C5 e C6 com S1, S2, S3, S4 e S5. Os cálculos numéricos estão disponíveis na TAB. 63, APÊNDICE U. As diferenças de cor (? E) estão na TAB. 64:

Tabela 64 - Diferenças de cor (?E) obtidas para a cerâmica IPS-Empress2 + Eris

Padrão + associações	?E (diferenças de cor)
C4 + S1/C4 média (1,5mm)	2,94
C4 + S1/C5 média (2,0mm)	2,56
C4 + S1/C6 média (2,5mm)	2,61
C4 + S2/C4 média (1,5mm)	3,45
C4 + S2/C5 média (2,0mm)	3,04
C4 + S2/C6 média (2,5mm)	2,66
C4 + S3/C4 média (1,5mm)	4,01
C4 + S3/C5 média (2,0mm)	3,39
C4 + S3/C6 média (2,5mm)	2,88
C4 + S4/C4 média (1,5mm)	4,05
C4 + S4/C5 média (2,0mm)	3,47
C4 + S4/C6 média (2,5mm)	2,94
C4 + S5/C4 média (1,5mm)	5,30
C4 + S5/C5 média (2,0mm)	4,48
C4 + S5/C6 média (2,5mm)	3,60

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.

As médias finais das coordenadas L* a* e b* e das diferenças de luminosidade (?L*), diferenças de cor da coordenada de cromaticidade a*(?a*) e diferenças de cor da coordenada de cromaticidade b* (?b*) estão nas TAB. 65 a 67.

Tabela 65 - Diferenças de luminosidade (?L*) obtidas para a cerâmica IPS-Empress2 + Eris

Padrão + associações	Média do padrão	Médias das coordenadas L*	?L*
C4 + S1/C4 média	65,14	67,87	-2,72
C4 + S1/C5 média	65,14	66,09	-0,95
C4 + S1/C6 média	65,14	64,53	0,61
C4 + S2/C4 média	65,14	68,32	-3,18
C4 + S2/C5 média	65,14	66,32	-1,18
C4 + S2/C6 média	65,14	64,35	0,79
C4 + S3/C4 média	65,14	68,77	-3,63
C4 + S3/C5 média	65,14	66,47	-1,33
C4 + S3/C6 média	65,14	64,62	0,52
C4 + S4/C4 média	65,14	68,60	-3,46
C4 + S4/C5 média	65,14	66,24	-1,10
C4 + S4/C6 média	65,14	64,52	0,62
C4 + S5/C4 média	65,14	69,35	-4,21
C4 + S5/C5 média	65,14	66,80	-1,66
C4 + S5/C6 média	65,14	64,82	0,32

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.

Tabela 66 - Diferenças de cor da coordenada de cromaticidade a * (?a *) obtidas para a cerâmica IPS-Empress2 + Eris

Padrão + associações	Média do padrão	Médias das coordenadas a*	?a*
C4 + S1/C4 média	0,79	1,07	-0,28
C4 + S1/C5 média	0,79	2,05	-1,26
C4 + S1/C6 média	0,79	2,93	-2,14
C4 + S2/C4 média	0,79	1,11	-0,32
C4 + S2/C5 média	0,79	2,14	-1,35
C4 + S2/C6 média	0,79	2,87	-2,08
C4 + S3/C4 média	0,79	1,31	-0,52
C4 + S3/C5 média	0,79	2,37	-1,58
C4 + S3/C6 média	0,79	3,10	-2,31
C4 + S4/C4 média	0,79	1,75	-0,96
C4 + S4/C5 média	0,79	2,58	-1,79
C4 + S4/C6 média	0,79	3,13	-2,34
C4 + S5/C4 média	0,79	2,55	-1,76
C4 + S5/C5 média	0,79	3,13	-2,34
C4 + S5/C6 média	0,79	3,62	-2,83

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.

Tabela 67 - Diferenças de cor da coordenada de cromaticidade b* (?b*) obtidas para a cerâmica IPS-Empress2 + Eris

Padrão + associações	Média do padrão	Médias das coordenadas b*	?b*
C4 + S1/C4 média	13,41	13,70	-0,28
C4 + S1/C5 média	13,41	15,38	-1,96
C4 + S1/C6 média	13,41	14,66	-1,25
C4 + S2/C4 média	13,41	14,34	-0,92
C4 + S2/C5 média	13,41	15,82	-2,40
C4 + S2/C6 média	13,41	14,76	-1,34
C4 + S3/C4 média	13,41	14,61	-1,20
C4 + S3/C5 média	13,41	16,06	-2,65
C4 + S3/C6 média	13,41	14,97	-1,56
C4 + S4/C4 média	13,41	14,78	-1,36
C4 + S4/C5 média	13,41	16,12	-2,71
C4 + S4/C6 média	13,41	14,94	-1,52
C4 + S5/C4 média	13,41	15,90	-2,48
C4 + S5/C5 média	13,41	16,77	-3,35
C4 + S5/C6 média	13,41	15,53	-2,12

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.

5.5 ANÁLISE ESTATÍSTICA DOS RESULTADOS

A análise estatística para as 3 espessuras das cerâmicas (IPS-Empress e IPS-Empress2 + Eris) associadas a diferentes substratos foi realizada pelo teste de Análise de Variância (ANOVA) a dois fatores, tendo como primeiro fator a espessura

(3 níveis) e como segundo, o substrato (5 níveis). Cinco repetições foram realizadas para cada situação, em nível de significância de p<0,05. Inicialmente foi analisada a cerâmica Empress e suas variáveis, e em um segundo momento, independente da primeira análise estatística, a cerâmica Empress2 + Eris e suas variáveis.

5.5.1 Análise estatística dos resultados para a cerâmica IPS-Empress

A análise estatística para a cerâmica IPS-Empress foi realizada em 4 etapas: análise das diferenças de cor (unidade ?E), análise das diferenças de luminosidade (unidade ?L*), análise das diferenças de cor da coordenada de cromaticidade a* (unidade ?a*) e análise das diferenças de cor da coordenada de cromaticidade b* (unidade ?b*).

5.5.1.1 Análise estatística das diferenças de cor para a cerâmica IPS-Empress (?E)

As médias obtidas das diferenças de cor para a cerâmica IPS-Empress podem ser observadas na estatística descritiva.

Tabela 68 - Estatística descritiva (média, desvio-padrão) das diferenças de cor, segundo espessura e substratos analisados para a cerâmica IPS-Empress

Cerâmica	S1	S2	S3	S4	S5	Total
IPS-Empress	(resina)	(PPacabado)	(PPpolido)	(Ouro acabado)	(Ouro polido)	Total
C1 (1,5mm)	3,99 (0,22)	4,23 (0,23)	6,03 (0,98)	6,22 (0,41)	8,90 (0,22)	5,87 (1,86)
C2 (2,0mm)	5,53 (0,82)	5,42 (0,71)	6,28 (0,94)	6,37 (0,92)	8,19 (0,70)	6,36 (1,26)
C3 (2,5mm)	5,46 (0,46)	5,48 (0,52)	6,10 (0,66)	6,28 (0,68)	7,40 (0,40)	6,14 (0,88)

Obtidas as médias das diferenças de cor, realizou-se a análise de Variância (ANOVA) em nível de significância de p<0,05.

Tabela 69 - Análise de variância das diferenças de cor, medidas em unidades de cor (? E), segundo espessura e substrato para a cerâmica IPS-Empress

Fonte da variação das diferenças de cor	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	valor-p
Espessura	2,940733	2	1,470366	3,501233	0,036
Substratos	99,78252	4	24,94563	59,40048	< 0,001
Interações	15,41974	8	1,927468	4,589681	< 0,001
Erro	25,1974	60	0,419957	••	••

A diferença de cor variou significativamente entre as espessuras testadas (p=0,036), entre os substratos analisados (p<0,001) e na interação espessura X substrato (p<0,001).

Comparações múltiplas entre as situações experimentais foram realizadas pelo teste *Least Significant Differences* (LSD) em nível de 0,05 de significância (p<0,05).

Tabela 70 - Resultados das comparações múltiplas das diferenças de cor obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress

Espessura	Média 1	Média 2	Valor p
C1 - C2	5,88	6,36	0,010*
C1 - C3	5,88	6,15	0,145
C2 - C3	6,36	6,15	0,249

^{*} Estatisticamente diferentes

 C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

Tabela 71 - Resultados das comparações múltiplas das diferenças de cor obtidas com o teste LSD (p<0,05) para a variável substrato com IPS-Empress

Substrato	Média 1	Média 2	Valor p
S1 - S2	5,00	5,05	0,834
S1 - S3	5,00	6,14	< 0,001*
S1 - S4	5,00	6,30	< 0,001*
S1 - S5	5,00	8,17	< 0,001*
S2 - S3	5,05	6,14	< 0,001*
S2 - S4	5,05	6,30	< 0,001*
S2 - S5	5,05	8,17	< 0,001*
S3 - S4	6,14	6,30	0,511
S3 - S5	6,14	8,17	< 0,001*
S4 - S5	6,30	8,17	< 0,001*

^{*} Estatisticamente diferentes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido

As interações encontradas na análise de variância e identificadas pelo teste LSD podem ser observadas na TAB.72.

Tabela 72 - Resultados das comparações múltiplas das diferenças de cor obtidas com o teste LSD (p<0,05) para as interações entre espessura X substrato com IPS-Empress.

Interações	Média 1	Média 2	Valor p
Espessura X Substrato			
C1S1 - C1S2	3,99	4,23	0,552
C1S3 - C1S4	6,03	6,22	0,642
C1S3 - C2S1	6,03	5,54	0,230
C1S3 - C2S2	6,03	5,42	0,140
C1S3 - C2S3	6,03	6,29	0,541
C1S3 - C2S4	6,03	6,38	0,404
C1S3 - C3S1	6,03	5,46	0,170
C1S3 - C3S2	6,03	5,48	0,185
C1S3 - C3S3	6,03	6,10	0,865
C1S3 - C3S4	6,03	6,29	0,536
C1S4 - C2S1	6,22	5,54	0,098
C1S4 - C2S2	6,22	5,42	0,054
C1S4 - C2S3	6,22	6,29	0,883
C1S4 - C2S4	6,22	6,38	0,711
C1S4 - C3S1	6,22	5,46	0,068
C1S4 - C3S2	6,22	5,48	0,075
C1S4 - C3S3	6,22	6,10	0,768
C1S4 - C3S4	6,22	6,29	0,878
C1S5 - C2S5	8,91	8,20	0,087
C2S1 – C2S2	5,54	5,42	0,777
C2S1 – C2S3	5,54	6,29	0,073
C2S1 - C3S1	5,54	5,46	0,858
C2S1 – C3S2	5,54	5,48	0,898
C2S1 – C3S3	5,54	6,10	0,172
C2S1 - C3S4	5,54	6,29	0,071
C2S2 – C3S1	5,42	5,46	0,918
C2S2 – C3S2	5,42	5,48	0,877
C2S2 – C3S3	5,42	6,10	0,101
C2S3 – C2S4	6,29	6,38	0,823
C2S3 – C3S2	6,29	5,48	0,055
C2S3 – C3S3	6,29	6,10	0,659
C2S3 – C3S4	6,29	6,29	0,994
C2S4 - C3S3	6,38	6,10	0,506
C2S4 - C3S4	6,38	6,29	0,829
C2S5 – C3S5	8,10	7,41	0,060
C3S1 – C3S3	8,10	5,46	0,960
C3S1 - C3S2 C3S1 - C3S3	5,46	5,48	0,980
C3S2 – C3S3	5,48	6,10	0,123
C3S2 – C3S3 C3S2 – C3S4	6,10	6,29	0,136
C3S2 - C3S4 C3S3 - C3S4	6,10 6,10	6,29 6,29	0,054 0,065

^{*} Todas as associações acima citadas são estatisticamente semelhantes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

5.5.1.2 Análise estatística das diferenças de luminosidade para a cerâmica IPS-Empress (?L*)

As médias obtidas das diferenças de luminosidade para a cerâmica IPS-Empress podem ser observadas na estatística descritiva.

Tabela 73 - Estatística descritiva (média, desvio-padrão) das diferenças de luminosidade, segundo espessura e substratos analisados para a cerâmica IPS-Empress

Cerâmica IPS-Empress	S1 (resina)	S2 (PPacabado)	S3 (PPpolido)	S4 (Ouro acabado)	S5 (Ouro polido)	Total
C1 (1,5mm)	-3,65 (0,33)	-4,06 (0,27)	-5,56 (0,84)	-5,20 (0,54)	-7,02 (0,29)	-5,10 (1,29)
C2 (2,0mm)	-5,34 (0,73)	-5,33 (0,60)	-6,08 (0,89)	-5,96 (0,77)	-7,22 (0,63)	-5,99 (0,97)
C3 (2,5mm)	-5,22 (0,66)	-5,30 (0,68)	-5,77 (0,91)	-5,78 (0,82)	-6,41 (0,71)	-5,70 (0,82)

Obtidas as médias das diferenças de luminosidade, realizou-se a análise de Variância (ANOVA) em nível de significância de p<0,05.

Tabela 74 - Análise de variância das diferenças de luminosidade (?L*), segundo espessura e substrato para a cerâmica IPS-Empress

Fonte da variação das diferenças de cor	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	valor-p
Espessura	10,26908	2	5,134541	11,10702	< 0,001
Substratos	43,92115	4	10,98029	23,75251	< 0,001
Interações	7,919833	8	0,989979	2,141518	0,045
Erro	27,73674	60	0,462279	••	••

A diferença de luminosidade variou significativamente entre as espessuras (p<0,001), entre os substratos analisados (p<0,001) e na interação espessura X substrato (p = 0,046).

Comparações múltiplas entre as situações experimentais foram realizadas pelo teste LSD em nível de 0,05 de significância (p<0,05).

Tabela 75 - Resultados das comparações múltiplas das diferenças de luminosidade obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress

Espessura	Média 1	Média 2	Valor p
C1 - C2	-5,10	-5,99	< 0,001*
C1 - C3	-5,10	-5,70	< 0,001*
C2 - C3	-5,99	-5,70	0,138

^{*} Estatisticamente diferentes

• C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

Tabela 76 - Resultados das comparações múltiplas das diferenças de luminosidade obtidas com o teste LSD (p<0,05) para a variável substrato com IPS-Empress

Substrato	Média 1	Média 2	Valor p
S1 - S2	-4,74	-4,90	0,513
S1 - S3	-4,74	-5,81	< 0,001*
S1 - S4	-4,74	-5,65	< 0,001*
S1 - S5	-4,74	-6,89	< 0,001*
S2 - S3	-4,90	-5,81	< 0,001*
S2 - S4	-4,90	-5,65	< 0,001*
S2 - S5	-4,90	-6,89	< 0,001*
S3 - S4	-5,81	-5,65	0,536
S3 - S5	-5,81	-6,89	< 0,001*
S4 - S5	-5,65	-6,89	< 0,001*

^{*} Estatisticamente diferentes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido

As interações encontradas na análise de variância e identificadas pelo teste LSD podem ser observadas na TAB. 77.

Tabela 77 - Resultados das comparações múltiplas das diferenças de luminosidade obtidas com o teste LSD (p<0,05) para as interações entre espessura X substrato com IPS-Empress (continua)

Interações	Média 1	Média 2	Valor p
Espessura X Substrato			
C1S1 - C1S3	-3,65	-4,07	0,335
C1S3 - C1S4	-5,56	-5,21	0,411
C1S3 - C2S1	-5,56	-5,34	0,613
C1S3 - C2S2	-5,56	-5,33	0,598
C1S3 - C2S3	-5,56	-6,08	0,230
C1S3 - C2S4	-5,56	-5,96	0,354
C1S3 - C3S1	-5,56	-5,23	0,437
C1S3 - C3S2	-5,56	-5,31	0,556
C1S3 - C3S3	-5,56	-5,77	0,627
C1S3 - C3S4	-5,56	-5,78	0,607
C1S3 - C3S5	-5,56	-6,41	0,051
C1S4 - C2S1	-5,21	-5,34	0,751
C1S4 - C2S2	-5,21	-5,33	0,768
C1S4 - C2S4	-5,21	-5,96	0,083

Tabela 77 - Resultados das comparações múltiplas das diferenças de luminosidade obtidas com o teste LSD (p<0,05) para as interações entre espessura X substrato com IPS-Empress (conclusão)

Interações	Média 1	Média 2	Valor p
Espessura X Substrato			
C1S4 – C3S1	-5,21	-5,23	0,964
C1S4 - C3S2	-5,21	-5,31	0,815
C1S4 - C3S3	-5,21	-5,77	0,193
C1S4 - C3S4	-5,21	-5,78	0,184
C1S5 - C2S5	-7,02	-7,23	0,635
C1S5 - C3S5	-7,02	-6,42	0,165
C2S1 - C2S2	-5,34	-5,33	0,982
C2S1 - C2S3	-5,34	-6,08	0,090
C2S1 - C2S4	-5,34	-5,96	0,154
C2S1 - C3S1	-5,34	-5,22	0,785
C2S1 - C3S2	-5,34	-5,31	0,934
C2S1 - C3S3	-5,34	-5,77	0,323
C2S1 - C3S4	-5,34	-5,78	0,309
C2S2 - C2S3	-5,33	-6,08	0,086
C2S2 - C2S4	-5,33	-5,96	0,148
C2S2 - C3S1	-5,33	-5,23	0,802
C2S2 - C3S2	-5,33	-5,31	0,951
C2S2 - C3S3	-5,33	-5,77	0,313
C2S2 - C3S4	-5,33	-5,78	0,299
C2S3 - C2S4	-6,09	-5,96	0,780
C2S3 - C3S1	-6,09	-5,23	0,050
C2S3 - C3S2	-6,09	-5,31	0,076
C2S3 - C3S3	-6,09	-5,77	0,470
C2S3 - C3S4	-6,09	-5,78	0,488
C2S3 - C3S5	-6,09	-6,42	0,443
C2S4 - C3S1	-5,96	-5,23	0,091
C2S4 - C3S2	-5,96	-5,31	0,132
C2S4 - C3S3	-5,96	-5,77	0,657
C2S4 - C3S4	-5,96	-5,78	0,678
C2S4 - C3S5	-5,96	-6,42	0,297
C2S5 - C3S5	-7,22	-6,42	0,065
C3S1 - C3S2	-5,23	-5,31	0,850
C3S1 - C3S3	-5,23	-5,77	0,209
C3S1 - C3S4	-5,23	-5,78	0,199
C3S2 - C3S3	-5,31	-5,77	0,284
C3S2 - C3S4	-5,31	-5,78	0,272
C3S3 - C3S4	-5,77	-5,78	0,977
C3S3 - C3S5	-5,77	-6,42	0,140
C3S4 - C3S5	-5,78	-6,42	0,147

^{*} Todas as associações acima citadas são estatisticamente semelhantes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

5.5.1.3 Análise estatística das diferenças de cor da coordenada de cromaticidade a* para a cerâmica IPS-Empress (?a*)

As médias obtidas das diferenças de cor da coordenada de cromaticidade a* para a cerâmica IPS-Empress podem ser observadas na estatística descritiva.

Tabela 78 - Estatística descritiva (média, desvio-padrão) das diferenças de cor da coordenada de cromaticidade a*, segundo espessura e substratos analisados para a cerâmica IPS-Empress

Cerâmica	S1	S2	S3	S4	S5	Total
IPS-Empress	(resina)	(PPacabado)	(PPpolido)	(Ouro acabado)	(Ouro polido)	Total
C1 (1,5mm)	-1,13 (0,09)	-0,71 (0,08)	-1,08 (0,13)	-1,96 (0,09)	-2,86 (0,13)	-1,55 (0,79)
C2 (2,0mm)	-0,72 (0,17)	-0,40 (0,12)	-0,68 (0,09)	-1,25 (0,14)	-1,98 (0,17)	-1,01 (0,58)
C3 (2,5mm)	-0,62 (0,21)	-0,34 (0,19)	-0,64 (021)	-1,02 (0,26)	-1,66 (0,24)	-0,86 (0,51)

Obtidas as médias das diferenças de cor da coordenada de cromaticidade a*, realizou-se a análise de Variância (ANOVA) em nível de significância de p<0,05.

Tabela 79 - Análise de variância das diferenças de cor da coordenada de cromaticidade a* (?a*), segundo espessura e substrato para a cerâmica IPS-Empress

Fonte da variação das diferenças de cor	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	valor-p
Espessura	6,632067	2	3,316033	117,895	< 0,001
Substratos	26,65516	4	6,66379	236,9179	< 0,001
Interações	1,334568	8	0,166821	5,93099	< 0,001
Erro	1,687662	60	0,28127	••	••

A diferença de cor variou significativamente entre as espessuras (p<0,001), entre os substratos analisados (p<0,001) e na interação espessura X substrato (p<0,001).

Comparações múltiplas entre as situações experimentais foram realizadas pelo teste LSD em nível de 0,05 de significância (p<0,05).

Tabela 80 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade a* obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress

Espessura	Média 1	Média 2	Valor p
C1 - C2	-1,55	-1,01	< 0,001*
C1 - C3	-1,55	-0,86	< 0,001*
C2 - C3	-1,01	-0,86	< 0,001*

^{*} Estatisticamente diferentes

• C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

Tabela 81 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade a* obtidas com o teste LSD (p<0,05) para a variável substrato com IPS-Empress

Espessura	Média 1	Média 2	Valor p
S1 - S2	-0,83	-0,49	< 0,001*
S1 - S3	-0,83	-0,80	0,706
S1 - S4	-0,83	-1,42	< 0,001*
S1 - S5	-0,83	-2,17	< 0,001*
S2 - S3	-0,49	-0,80	< 0,001*
S2 - S4	-0,49	-1,42	< 0,001*
S2 - S5	-0,49	-2,17	< 0,001*
S3 - S4	-0,80	-1,42	< 0,001*
S3 - S5	-0,80	-2,17	< 0,001*
S4 - S5	-1,42	-2,17	< 0,001*

^{*} Estatisticamente diferentes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido

As interações encontradas na análise de variância e identificadas pelo teste LSD podem ser observadas na TAB. 82.

Tabela 82 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade a* (?a*) obtidas com o teste LSD (p<0,05) para as interações entre espessura e substrato com IPS-Empress

Interações	Média 1	Média 2	Valor p
Espessura X Substrato			
C1S1 - C1S3	-1,13	-1,09	0,656
C1S1 - C2S3	-1,13	-1,26	0,252
C1S1 - C3S4	-1,13	-1,03	0,321
C1S2 - C2S1	-0,71	-0,72	0,952
C1S2 - C2S3	-0,71	-0,69	0,770
C1S2 - C3S1	-0,71	-0,63	0,409
C1S2 - C3S3	-0,71	-0,64	0,495
C1S3 - C2S4	-1,09	-1,26	0,114
C1S3 - C3S4	-1,09	-1,03	0,582
C1S4 - C2S5	-1,97	-1,98	0,897
C2S1 - C2S3	-0,72	-0,69	0,725
C2S1 - C3S1	-0,72	-0,63	0,376
C2S1 - C3S3	-0,72	-0,64	0,458
C2S2 - C3S2	-0,40	-0,34	0,587
C2S3 - C3S1	-0,69	-0,63	0,593
C2S3 - C3S3	-0,69	-0,64	0,695
C3S1 - C3S3	-0,63	-0,64	0,886

^{*} Todas as associações acima citadas são estatisticamente semelhantes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

5.5.1.4 Análise estatística das diferenças de cor da coordenada de cromaticidade b* para a cerâmica IPS-Empress (?b*)

As médias obtidas das diferenças de cor da coordenada de cromaticidade b* para a cerâmica IPS-Empress podem ser observadas na estatística descritiva.

Tabela 83 - Estatística descritiva (média, desvio-padrão) das diferenças de cor da coordenada de cromaticidade b*, segundo espessura e substratos analisados para a cerâmica IPS-Empress

Cerâmica	S1	S2	S3	S4	S5	Total
IPS-Empress	(resina)	(PPacabado)	(PPpolido)	(Ouro acabado)	(Ouro polido)	Total
C1 (1,5mm)	-1,06 (0,38)	-0,88 (0,31)	-2,01 (0,70)	-2,75 (0,33)	-4,65 (0,35)	-2,27 (1,45)
C2 (2,0mm)	-0,79 (1,14)	-0,61 (0,77)	-1,34 (0,57)	-1,67 (1,07)	-3,18 (1,08)	-1,52 (1,27)
C3 (2,5mm)	-1,09 (0,95)	-0,99 (0,86)	-1,53 (1,01)	-1,91 (1,18)	-3,18 (0,79)	-1,74 (1,19)

Obtidas as médias das diferenças de cor da coordenada de cromaticidade b*, realizou-se a análise de Variância (ANOVA) em nível de significância de p<0,05.

Tabela 84 - Análise de variância das diferenças de cor da coordenada de cromaticidade b* (?b*), segundo espessura e substrato para a cerâmica IPS-Empress

Fonte da variação das diferenças de cor	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	valor-p
Espessura	7,498786	2	3,749393	5,484647	< 0,001
Substratos	78,4611	4	19,61528	28,69341	< 0,001
Interações	4,846078	8	0,60576	0,886111	0,534
Erro	41,01696	60	0,683616		

A diferença de cor variou significativamente entre as diferentes espessuras (p<0,001), entre os substratos analisados (p<0,001), não ocorrendo interações significativas entre espessura e substrato (p=0,534).

As comparações múltiplas para os grupos experimentais foram realizadas pelo teste LSD em nível de 0,05 de significância (p<0,05).

Tabela 85 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade b* (?b*) obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress

Espessura	Média 1	Média 2	Valor p
C1 - C2	-2,27	-1,52	0,002*
C1 - C3	-2,27	-1,74	0,026*
C2 - C3	-1,52	-1,74	0,347

^{*} Estatisticamente diferentes

• C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

Tabela 86 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade b* (? b*) obtidas com o teste LSD (p<0,05) para a variável substrato com IPS-Empress

Substrato	Média 1	Média 2	Valor p
S1 - S2	-0,98	-0,83	0,616
S1 - S3	-0,98	-1,63	0,037
S1 - S4	-0,98	-2,11	< 0,001*
S1 - S5	-0,98	-3,67	< 0,001*
S2 - S3	-0,83	-1,63	0,011
S2 - S4	-0,83	-2,11	< 0,001*
S2 - S5	-0,83	-3,67	< 0,001*
S3 - S4	-1,63	-2,11	0,115
S3 - S5	-1,63	-3,67	< 0,001*
S4 - S5	-2,11	-3,67	< 0,001*

^{*} Estatisticamente diferentes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido

5.5.2 Análise estatística dos resultados para a cerâmica IPS-Empress2 + Eris

A análise estatística para a cerâmica IPS-Empress2 + Eris foi realizada em quatro etapas: análise das diferenças de cor (unidade ?E), análise das diferenças de luminosidade (unidade ?L*), análise das diferenças de cor da coordenada de cromaticidade a* (unidade ?a*) e análise das diferenças de cor da coordenada de cromaticidade b* (unidade ?b*).

5.5.2.1 Análise estatística das diferenças de cor para a cerâmica IPS-Empress2 + Eris (?E)

As médias obtidas das diferenças de cor para a cerâmica IPS-Empress 2 + Eris podem ser observadas na estatística descritiva.

Tabela 87 - Estatística descritiva (média, desvio-padrão) das diferenças de cor segundo espessura e substratos analisados para a cerâmica IPS-Empress 2 + Eris

Cerâmica	S1	S2	S3	S4	S5	Total
E2+Eris	(resina)	(PPacabado)	(PPpolido)	(Ouro acabado)	(Ouro polido)	
C4 (1,5mm)	2,93 (1,04)	3,45 (1,59)	4,01 (1,35)	4,04 (1,34)	5,30 (0,69)	3,95 (1,39)
C5 (2,0mm)	2,56 (0,38)	3,03 (0,67)	3,38 (0,57)	3,47 (0,21)	4,47 (0,36)	3,38 (0,77)
C6 (2,5mm)	2,61 (0,22)	2,65 (0,28)	2,88 (0,36)	2,93 (0,19)	3,59 (0,23)	2,93 (0,43)

Obtidas as médias das diferenças de cor, realizou-se a análise de Variância (ANOVA) em nível de significância de p<0,05.

Tabela 88 - Análise de variância das diferenças de cor, medidas em unidades de cor (? E), segundo espessura e substrato para a cerâmica IPS-Empress2 + Eris

Fonte da variação das diferenças de cor	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	valor-p
Espessura	12,87857	2	6,439286	10,41779	< 0,001
Substratos	26,08025	4	6,520061	10,54848	< 0,001
Interações	2,692503	8	0,336563	0,544508	0,818
Erro	37,08627	60	0.618105		

A diferença de cor variou significativamente entre as espessuras testadas (<0,001), entre os substratos analisados (p<0,001), não ocorrendo interações significativas entre espessura X substrato (p=0,818).

Comparações múltiplas entre as situações experimentais foram realizadas pelo teste LSD em nível de 0,05 de significância (p<0,05).

Tabela 89 - Resultados das comparações múltiplas das diferenças de cor obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress2 + Eris

Espessura	Média 1	Média 2	Valor p
C4 x C5	3,95	3,39	0,142
C4 x C6	3,95	2,94	< 0,001*
C5 x C6	3,39	2,94	0,470

^{*} Estatisticamente diferentes

• C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.

Tabela 90 - Resultados das comparações múltiplas das diferenças de cor obtidas com o teste LSD (p<0,05) para a variável substrato com IPS-Empress2 + Eris

Substrato	Média 1	Média 2	Valor p
S1 x S2	2,70	3,05	0,235
S1 x S3	2,70	3,43	0,014*
S1 x S4	2,70	3,49	0,008*
S1 x S5	2,70	4,46	< 0,001*
S2 x S3	3,05	3,43	0,192
S2 x S4	3,05	3,49	0,132
S2 x S5	3,05	4,46	< 0,001*
S3 x S4	3,43	3,49	0,836
S3 x S5	3,43	4,46	< 0,001*
S4 x S5	3,49	4,46	< 0,001*

^{*} Estatisticamente diferentes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido

5.5.2.2 Análise estatística das diferenças de luminosidade para a cerâmica IPS-Empress2 + Eris (?L*)

As médias obtidas das diferenças de luminosidade para a cerâmica IPS-Empress 2 + Eris podem ser observadas na estatística descritiva.

Tabela 91 - Estatística descritiva (média, desvio-padrão) das diferenças de luminosidade, segundo espessura e substratos analisados para a cerâmica IPS-Empress2 + Eris

Cerâmica	S1	S2	S3	S4	S5	Total
E2+Eris	(resina)	(PPacabado)	(PPpolido)	(Ouro acabado)	(Ouro polido)	Total
C4 (1,5mm)	-2,72 (1,32)	-3,17 (1,67)	-3,62 (1,59)	-3,46 (1,75)	-4,20 (1,60)	-3,44 (1,47)
C5 (2,0mm)	-0,94 (0,56)	-1,18 (0,65)	-1,32 (0,61)	-1,09 (0,62)	-1,65 (0,86)	-1,24 (0,66)
C6 (2,5mm)	0,61 (0,63)	0,78 (0,67)	0,52 (0,53)	0,62 (0,71)	0,32 (0,62)	0,57 (0,60)

Obtidas as médias das diferenças de luminosidade, realizou-se a análise de Variância (ANOVA) em nível de significância de p>0,05.

Tabela 92 - Análise de variância das diferenças de luminosidade (?L*), segundo espessura e substrato para a cerâmica IPS-Empress2 + Eris

Fonte da variação das diferenças de cor	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	valor-p
Espessura	201,9848	2	100,9924	95,78048	< 0,001
Substratos	5,975244	4	1,493811	1,41672	0,24
Interações	2,08581	8	0,260726	0,247271	0,98
Erro	63,26492	60	1,054415	**	

A diferença de luminosidade variou significativamente entre as espessuras (p<0,001), e nenhuma diferença significativa foi observada entre os substratos (p=0,24) e nas interações entre espessura X substrato (p=0,98).

Comparações múltiplas para a variável espessura foram realizadas pelo teste LSD em nível de 0,05 de significância (p<0,05).

Tabela 93 - Resultados das comparações múltiplas das diferenças de luminosidade obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress2 + Eris

Espessura	Média 1	Média 2	Valor p
C4 x C5	-3,44	-1,24	< 0,001*
C4 x C6	-3,44	0,57	< 0,001*
C5 x C6	-1,24	0,57	< 0,001*

^{*} Estatisticamente diferentes

• C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.

5.5.2.3 Análise estatística das diferenças de cor da coordenada de cromaticidade a* para a cerâmica IPS-Empress2 + Eris (?a*)

As médias obtidas das diferenças de cor da coordenada de cromaticidade a* para a cerâmica IPS-Empress2 + Eris podem ser observadas na estatística descritiva.

Tabela 94 - Estatística descritiva (média, desvio-padrão) das diferenças de cor da coordenada de cromaticidade a*, segundo espessura e substratos analisados para a cerâmica IPS-Empress2 + Eris

Cerâmica	S1	S2	S3	S4	S5	Total
E2+Eris	(resina)	(PPacabado)	(PPpolido)	(Ouro acabado)	(Ouro polido)	Total
C4 (1,5mm)	-0,27 (0,53)	-0,31 (0,40)	-0,51 (0,49)	-0,96 (0,55)	-1,76 (0,50)	-0,76 (0,72)
C5 (2,0mm)	-1,25 (0,09)	-1,35 (0,24)	-1,58 (0,17)	-1,78 (0,15)	-2,34 (0,14)	-1,66 (0,42)
C6 (2,5mm)	-2,14 (0,11)	-2,07 (0,12)	-2,31 (0,20)	-2,34 (0,11)	-2,82 (0,13)	-2,34 (0,29)

Obtidas as médias das diferenças de cor da coordenada de cromaticidade a* realizou-se a análise de Variância (ANOVA) em nível de significância de p<0,05.

Tabela 95 - Análise de variância das diferenças de cor da coordenada de cromaticidade a* (?a*), segundo espessura e substrato para a cerâmica IPS-Empress2 + Eris

Fonte da variação das diferenças de cor	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	valor-p
Espessura	31,09077	2	15,54539	155,8917	< 0,001
Substratos	11,92521	4	2,981302	29,89699	< 0,001
Interações	1,196165	8	0,149521	1,499417	0,177
Erro	5,983149	60	0,099719		

A diferença de cor variou significativamente entre as espessuras (p<0,001), entre os substratos analisados (p<0,001), e nenhuma interação significativa foi observada entre espessura X substrato (p=0,177).

Comparações múltiplas entre as situações experimentais foram realizadas pelo teste LSD em nível de 0,05 de significância (p<0,05).

Tabela 96 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade a* obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress2 + Eris

Espessura	Média 1	Média 2	Valor p
C4 x C5	-0,77	-1,66	< 0,001*
C4 x C6	-0,77	-2,34	< 0,001*
C5 x C6	-1,66	-2,34	< 0,001*

^{*} Estatisticamente diferentes

Tabela 97 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade a* obtidas com o teste LSD (p<0,05) para a variável substrato com IPS-Empress2 + Eris

Espessura	Média 1	Média 2	Valor p
S1 x S2	-1,22	-1,25	0,841
S1 x S3	-1,22	-1,47	0,037*
S1 x S4	-1,22	-1,70	< 0,001*
S1 x S5	-1,22	-2,31	< 0,001*
S2 x S3	-1,25	-1,47	0,058
S2 x S4	-1,25	-1,70	< 0,001*
S2 x S5	-1,25	-2,31	< 0,001*
S3 x S4	-1,47	-1,70	0,054
S3 x S5	-1,47	-2,31	< 0,001*
S4 x S5	-1,70	-2,31	< 0,001*

^{*} Estatisticamente diferentes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido

5.5.2.4 Análise estatística das diferenças de cor da coordenada de cromaticidade b* para a cerâmica IPS-Empress2 + Eris (?b*)

As médias obtidas das diferenças de cor na coordenada de cromaticidade b* para a cerâmica IPS-Empress2 + Eris podem ser observadas na estatística descritiva.

Tabela 98 - Estatística descritiva (média, desvio-padrão) das diferenças de cor da coordenada de cromaticidade b*, segundo espessura e substratos analisados para a cerâmica IPS-Empress2 + Eris

Cerâmica	S1	S2	S3	S4	S5	Total
E2+Eris	(resina)	(PPacabado)	(PPpolido)	(Ouro acabado)	(Ouro polido)	Total
C4 (1,5mm)	-0,27 (0,60)	-0,92 (0,78)	-1,19 (0,77)	-1,36 (0,67)	-2,48 (0,59)	-1,24 (0,96)
C5 (2,0mm)	-1,96 (0,30)	-2,40 (0,49)	-2,65 (0,39)	-2,70 (0,21)	-3,35 (0,29)	-2,61 (0,56)
C6 (2,5mm)	-1,25 (0,16)	-1,34 (0,09)	-1,56 (0,33)	-1,52 (0,21)	-2,11 (0,28)	-1,56 (0,37)

Obtidas as médias das diferenças de cor na coordenada de cromaticidade b*, realizou-se a análise de Variância (ANOVA) em nível de significância de p<0,05.

Tabela 99 - Análise de variância das diferenças de cor da coordenada de cromaticidade b* (?b*), segundo espessura e substrato para a cerâmica IPS-Empress2 + Eris

Fonte da variação das diferenças de cor	Soma dos quadrados	Grau de liberdade	Quadrado médio	F	valor-p
Espessura	25,69746	2	12,84873	58,38984	< 0,001
Substratos	17,88724	4	4,471809	20,32172	< 0,001
Interações	2,433222	8	0,304153	1,382194	0,223
Erro	13,20305	60	0,220051	••	••

A diferença de cor variou significativamente entre as diferentes espessuras (p<0,001), entre os substratos analisados (p<0,001), não ocorrendo interações significativas entre espessura e substrato (p=0,223).

As comparações múltiplas para os grupos experimentais foram realizadas pelo teste LSD em nível de 0,05 de significância (p<0,05).

Tabela 100 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade b* (?b*) obtidas com o teste LSD (p<0,05) para a variável espessura com IPS-Empress2 + Eris

Espessura	Média 1	Média 2	Valor p
C4 x C5	-1,25	-2,62	< 0,001*
C4 x C6	-1,25	-1,56	0,022
C5 x C6	-2,62	-1,56	< 0,001*

^{*} Estatisticamente diferentes

• C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.

Tabela 101 - Resultados das comparações múltiplas das diferenças de cor da coordenada de cromaticidade b* (?b*) obtidas com o teste LSD (p<0,05) para a variável substrato com IPS-Empress2 + Eris

Substrato	Média 1	Média 2	Valor p
S1 x S2	-1,16	-1,56	0,025
S1 x S3	-1,16	-1,80	< 0,001*
S1 x S4	-1,16	-1,87	< 0,001*
S1 x S5	-1,16	-2,65	< 0,001*
S2 x S3	-1,56	-1,80	0,157
S2 x S4	-1,56	-1,87	0,076
S2 x S5	-1,56	-2,65	< 0,001*
S3 x S4	-1,80	-1,87	0,713
S3 x S5	-1,80	-2,65	< 0,001*
S4 x S5	-1,87	-2,65	< 0,001*

^{*} Estatisticamente diferentes

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido

5.5.3 Síntese dos resultados

5.5.3.1 Cerâmica IPS-Empress (QUADRO 7):

Cerâmica IPS-Empress - Diferenças de cor e luminosidade						
	Ce	ramica iP5-Empress - Dile	erenças de cor e iuminosidade			
	?E	?L*	?a*	?b*		
	(Diferenças de cor)	(Diferenças de luminosidade)	(Diferenças de cor da coordenada	(Diferenças de cor da coordenada		
			de cromaticidade a*)	de cromaticidade b*)		
Espessura	C1 e C2 diferentes	C1 e C2 diferentes	C1/ C2 e C3 diferentes	C1 e C2 diferentes		
	C2 e C3 semelhantes	C2 e C3 semelhantes	Tendência para o verde	C2 e C3 semelhantes		
	p = 0.036	p < 0,001	p < 0,001	Tendência para o azul		
				p < 0,001		
Substrato	S1 e S2 semelhantes	S1 / S2 / S3 / S4	S1 e S3 semelhantes	S1 / S2 / S3 / S4		
	S3 e S4 semelhantes	semelhantes entre si e	S1/ S2 / S3/ S4 diferentes	semelhantes entre si e		
	S1 / S2 / S3/ S4	diferentes de S5	de S5	diferentes de S5		
	diferentes de S5	p < 0,001	p < 0,001	p < 0,001		
	p < 0,001					
Interações	Variáveis dependentes	Variáveis dependentes	Variáveis dependentes	Variáveis independentes		
	espessura X substrato	espessura X substrato	espessura X substrato	espessura X substrato		
	p < 0,001	p = 0,046	p < 0,001	p = 0,534		

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C1, C2, C3: Discos da cerâmica IPS-Empress nas espessuras de 1,5; 2,0 e 2,5mm, respectivamente.

Quadro 7- Síntese dos resultados estatísticos para a cerâmica IPS-Empress.

5.5.3.1 Cerâmica IPS-Empress2 + Eris (QUADRO 8):

Cerâmica IPS-Empress2 + Eris - Diferenças de cor e luminosidade				
	?E	?L*	?a*	?b*
	(Diferenças de cor)	(Diferenças de luminosidade)	(Diferenças de cor da coordenada	(Diferenças de cor da coordenada
			de cromaticidade a*)	de cromaticidade b*)
Espessura	C4 e C5 diferentes	C4/ C5 e C6 diferentes	C4/ C5 e C6 diferentes	C4/ C5 e C6 diferentes
	C5 e C6 semelhantes	p < 0,001	Tendência para o vermelho	Tendência para o amarelo
	p < 0,001		p < 0,001	p < 0,001
Substrato	S1 / S2 / S3 / S4	Nenhuma diferença	S1 / S2 / S3 / S4	S1 / S2 / S3 / S4
	semelhantes entre si e	estatística entre os	semelhantes entre si e	semelhantes entre si e
	diferentes de S5	substratos testados	diferentes de S5	diferentes de S5
	p < 0,001	p = 0,24	p < 0,001	p < 0,001
Interações	Variáveis	Variáveis	Variáveis independentes	Variáveis independentes
	independentes	independentes	espessura X substrato	espessura X substrato
	espessura X substrato	espessura X substrato	p= 0,177	p = 0,223
	p = 0,818	p = 0,98		

- S1: Disco de resina composta
- S2: Disco de prata-paládio acabado
- S3: Disco de prata-paládio acabado e polido
- S4: Disco de liga de ouro tipo IV acabado
- S5: Disco de liga de ouro tipo IV acabado e polido
- C4, C5 e C6: Discos da cerâmica IPS-Empress2 + Eris nas espessuras de 1,0; 2,0 e 2,5mm, respectivamente.

Quadro 8- Síntese dos resultados estatísticos para a cerâmica IPS-Empress2 + Eris.

6 DISCUSSÃO

A restauração de dentes esteticamente comprometidos é um procedimento de rotina na clínica odontológica. O desenvolvimento de cerâmicas reforçadas criou a possibilidade de devolvermos a estética destes dentes, mantendo a sua função. Na maioria das vezes, eles encontram-se desvitalizados, já possuindo pinos ou núcleos metálicos, ou necessitando destes artifícios para a construção de um novo trabalho. Com base nos resultados encontrados neste estudo, concordamos com Sieber (1996), Nakamura et al. (2002), Koutayas et al. (2003) que a presença destes pilares, que variam em material e cor, pode afetar a cor de coroas cerâmicas, reduzindo o grau de translucidez do conjunto. De fato, a cor da restauração depende do remanescente dentinário presente ou do tipo de material utilizado no substrato cerâmico. (HOLLOWAY; MILLER, 1997; HEFFERNAN et al., 2002a, 2002b).

Duas cerâmicas (IPS-Empress e IPS-Empress2 + Eris) foram utilizadas e associadas a diferentes substratos com o objetivo de simular as variáveis clínicas. Optou-se por não utilizar discos de agentes cimentantes entre as cerâmicas e os substratos, porque, apesar dos cimentos serem utilizados com o objetivo de mascarar o fundo (KOUTAYAS et al., 2003), o cimento contribui apenas de 10% a 15% da capacidade de mascaramento (VICHI; FERRARI; DAVIDSON, 2000; BARATH et al., 2003). Portanto, ao selecionar-se cerâmicas claras, como é o caso deste estudo, torna-se imprescindível obter a cor desejada através do sistema cerâmico escolhido. (BARATH et al., 2003).

Ao fazermos uma correspondência dos resultados obtidos para a cerâmica IPS-Empress com a escala de avaliação visual estendida (EVRSAM) descrita por Johnston e Kao (1989), todas as amostras cerâmicas demonstraram diferenças de cor perceptíveis e inaceitáveis clinicamente quando comparadas ao padrão, inclusive na espessura preconizada pelo fabricante (TAB. 59). Isto pode ser atribuído ao fato de a cerâmica IPS-Empress ser um material estruturalmente translúcido, composto de pequenos cristais de leucita que permanecem no material mesmo após o processo de injeção (NAKAMURA et al., 2003). Quando a luz incide sobre esta cerâmica, parte dela retorna como resultado da reflexão difusa, enquanto que a porção restante atravessa sua espessura por um processo de transmissão através da matriz que envolve as partículas de leucita. A luz que alcança o fundo (um substrato opaco) retorna por reflexão, passando novamente pela cerâmica. (HOLLOWAY; MILLER, 1997; PARAVINA, 2002; MICHALAKAIS et al., 2004). Portanto, as diferenças observadas entre o padrão e as amostras cerâmicas testadas se devem à influência da cor dos substratos na cor final do sistema IPS-Empress.

Quando se aumentou a espessura de IPS-Empress de 1,5mm a 2,0mm, diferenças colorimétricas foram observadas. A influência dos substratos foi maior para a menor espessura (1,5mm), fato que pode ser explicado pela menor quantidade de partículas presentes nela, o que facilita o processo de transmissão da luz. Quando a espessura foi aumentada para 2,5mm, o comportamento óptico da amostra cerâmica foi similar ao da amostra de 2,0mm. Isto nos levou a crer que a partir da espessura de 2,0mm, a cerâmica IPS-Empress apresentou o

comportamento óptico de um corpo opaco e, com base nestes resultados, não se justifica utilizar esta cerâmica em espessuras maiores que 2,0mm.

Nossos resultados foram similares aos encontrados por Vichi; Ferrari; Davidson (2000) e Nakamura et al. (2002, 2003) que, em espessuras maiores que 1,6mm de IPS-Empress, não encontraram diferenças de cor clinicamente relevantes, reforçando que não existe a necessidade de se preocupar com a cor do fundo, quando uma espessura entre 1,6 e 2,0mm for estabelecida.

As restaurações cerâmicas e metalo-cerâmicas são significativamente afetadas pela espessura de material, e empiricamente acredita-se que 1,5mm é o espaço necessário para obter um bom resultado estético. (JORGENSON; GOODKING, 1979; YAMAMOTO, 1985; SEGUI; JOHNSTON; O'BRIEN, 1986; JACOBS et al., 1987; ROSENSTIEL; JONHSTON, 1988; TERADA; MAEYAMA; HIRAYASU, 1989; DOUGLAS; PRZYBYLSKA, 1999; VICHI; FERRARI; DAVIDSON, 2000; CAROSSA et al., 2001; NAKAMURA et al., 2002; NAKAMURA et al., 2003). É importante compreender que a quantidade de tecido dental reduzido deve conferir uma adequada forma de retenção e resistência para a restauração cerâmica. Apesar destes requisitos serem facilmente obtidos em um preparo com redução axial de 1,5mm, a cerâmica escolhida para a reconstrução pode sofrer a influência da cor do substrato, resultando em um comprometimento estético, pois, esta condição foi observada e comprovada em nossos resultados.(QUADROS 7 e 8).

Na análise das diferenças de cor, todos os substratos testados apresentaram um comportamento colorimétrico estatisticamente diferente, com exceção de S1

(disco de resina) que se mostrou semelhante a S2 (disco de prata-paládio acabado), e S3 (disco de prata-paládio polido) que foi semelhante a S4 (disco de liga ouro tipo IV acabado). Estes resultados confirmam que, independente do substrato utilizado, a espessura de material cerâmico deve ser considerada, porque um aumento na espessura, aumenta a quantidade de partículas no interior da massa cerâmica, reduzindo, desta forma, a influência do substrato. Se conseguirmos controlar a espessura de material cerâmico, será mais fácil mascarar o substrato, principalmente quando ele já estiver presente e sua remoção for contra-indicada. O ideal é evitar que alterações de cor presentes na cerâmica tenham que ser mascaradas por pinturas extrínsicas como sugerido por Segui; Johnston; O'Brien (1986), Douglas e Przybylska (1999), Kourtis; Tripodakis; Doukoudakis (2004).

De acordo com a TAB. 71, as menores diferenças de cor foram encontradas com o S1 (disco de resina), enquanto que as maiores diferenças ocorreram quando o substrato S5 (disco de liga de ouro tipo IV polido) foi associado com a espessura de 1,5mm. Ao fazermos uma correspondência dos nossos resultados com a escala de avaliação visual estendida (EVRSAM) descrita por Johnston e Kao (1989), os piores resultados são aqueles associados ao substrato (S5) de liga de ouro tipo Iv polido (8,91; 8,20 e 7,41 ?E). Desta forma, é possível afirmar que todas as associações de IPS-Empress resultaram em alterações facilmente percebidas e inaceitáveis para a maioria dos pacientes, o que pode ser explicado pela grande luminosidade deste substrato, que possibilita uma grande reflexão especular quando a luz chega até a sua superfície, reforçando novamente a necessidade de reconsiderar a espessura do material cerâmico. Nossos resultados diferem dos encontrados por Nakamura et al. (2003) que, nas suas associações, encontraram as

maiores diferenças de cor com substratos de prata-paládio. Porém, diferenças na metodologia utilizada, como aparelhos de medição, ausência da película de água destilada entre os discos, e cores testadas podem justificar estas variações. Já Brewer et al. (1985) e Stavridakis et al. (2004) encontraram resultados similares aos deste estudo, quando associaram ligas de prata-paládio a coroas metalo-cerâmicas, enquanto que Carossa et al. (2001) encontraram pequenas diferenças de ∞ r em coroas cerâmicas, quando associadas com substratos de ouro.

Outro fator a ser considerado é a escolha do padrão de comparação para esta pesquisa. A seleção clínica da cor através da percepção visual com escalas padronizadas é o método mais utilizado na Odontologia. (O'BRIEN; GROH; BOENKE, 1989; VAN DER BURGT et al. 1990; SPROULL, 2001b). Dentes e escala de cores são analisados simultaneamente sobre as mesmas condições luminosas. O processo de escolha da cor é multifatorial e inclui a cor, forma, brilho, textura superficial, translucidez, cor gengival, influência dos dentes adjacentes, posição do dente em boca, fonte luminosa e a experiência do observador. Muitas desvantagens têm sido associadas com estas escalas: o número de cores é insuficiente, apresentam pigmentos superficiais que geram mais de uma cor na mesma superfície, não estão sistematicamente distribuídas de acordo com o espaço de cor CIEL*a*b*, o material disponível para uso em clínica e laboratório não é o mesmo das escalas de referência e a espessura dos dentes presentes nos guias não simulam a condição clínica. A utilização de uma escala de cores para padrão de nossa pesquisa não pôde ser realizada pelas desvantagens acima citadas, além de inviabilizar a sua mensuração pelo espectrofotômetro, por não apresentar uma superfície plano-paralela com homogeneidade de cor. Porém, como a escolha da cor

em boca depende de uma amostra cerâmica, a espessura indicada pelo fabricante nos pareceu ser o melhor padrão para comparação e, para tal, as médias finais das coordenadas L* a* b* de C1(IPS-Empress na espessura de 1,5mm) e C4 (IPS-Empress2 + Eris na espessura de 1,5mm) representaram o padrão utilizado nas comparações realizadas com todas as associações experimentais, por apresentarem a espessura clínica preconizada para estes sistemas.

Um dente humano também não pôde ser utilizado como padrão de comparação. Durante a formulação da metodologia, dois problemas foram encontrados: impossibilidade de se fabricar um disco de dente humano com o diâmetro proposto neste estudo, e a homogeneidade da cor da superfície deste dente. Como a janela de abertura do espectrofotômetro utilizado possui 5mm, o diâmetro mínimo para um disco de dente humano deveria ser de 10mm (o dobro da abertura), para que a mensuração pudesse ser realizada no centro do disco e não ocorresse o fenômeno do *edge-loss*, ou seja, perda de luz pela extremidade do disco, durante as mensurações espectrofotométricas (DOZIC et al., 2003). Além disto, o disco deveria apresentar um comportamento cobrimétrico homogêneo (KUEHNI, MARCUS, 1979), ou seja, apresentar na superfície testada a mesma cor ou uma variação mínima (um índice de flutuação da cor menor que 2?S), o que provavelmente seria difícil em função da impossibilidade de se obter um disco com um diâmetro de 10mm somente em dentina ou esmalte.

Todos os substratos foram testados quanto à sua homogeneidade e necessariamente precisavam apresentar o comportamento óptico de um objeto opaco. Este requisito foi facilmente preenchido pelas ligas metálicas, porém, o disco

de resina foi submetido a um estudo piloto para avaliarmos sua relação espessura versus opacidade. A espessura ideal para a resina composta utilizada foi de 3mm, apresentando uma razão de contraste de 1,0. Esta razão pode variar de 0 a 1. Ela tende para uma unidade (1) quando a amostra é opaca, e para 0 (zero) quando a amostra é transparente. A razão de contraste pode ser calculada a partir da refletância luminosa no fundo preto, dividida pela refletância no fundo branco. (PETTER; GLIESE, 2000). Por outro lado, como as amostras de C1 (IPS-Empress, 1,5mm) e C4 (IPS-Empress2 + Eris) apresentavam o comportamento óptico de um objeto translúcido, todas as mensurações para a obtenção das médias-padrão foram realizadas sobre um papel fotográfico cinza neutro preconizado por Kuehni e Marcus (1979), Vichi; Ferrari; Davidson (2000) e Paravina (2002), para que nenhuma interferência de fundo ocorresse durante as leituras das amostras cerâmicas.

Outra observação importante é que a luminosidade das amostras de IPS-Empress aumentou à medida que a espessura de material cerâmico aumentou, porque mais luz foi refletida pela cerâmica, resultando em um aumento no valor. (JORGENSON E GOODKING, 1979). O interessante é que, com a associação dos substratos, principalmente os polidos (S3:disco de prata-paládio polido e S5:disco de ouro tipo IV polido), ocorreu um maior aumento na luminosidade, assim como no estudo de Jacobs et al. (1987) e Stavridakis et al. (2004), para ligas de prata-paládio, e Crispin; Okamoto; Globe (1991), Kourtis; Tripodakis; Doukoudakis (2004), para ligas de ouro. Nossos resultados sugerem que a associação de substratos à cerâmica IPS-Empress melhorou a sua luminosidade, provavelmente pelo fato de os substratos metálicos funcionarem como uma barreira para a transmissão da luz, resultando na reflexão da mesma, e, conseqüentemente, aumentando a

luminosidade, quando comparada com o padrão. Isto pode ser confirmado pelos dados mais altos de luminosidade obtidos com os substratos polidos (S3 e S5) que, com suas superfícies similares a espelhos, refletem toda a luz que nelas incide por um fenômeno denominado de reflexão especular. Para Carossa et al. (2001), o fenômeno encontrado não propicia a sensação de cor, visto que não determinamos a cor da superfície de um espelho. O responsável pela sensação da cor é a reflexão que ocorre em diferentes ângulos, dependendo da liga metálica que foi utilizada. Porém, apesar de a luminosidade ter aumentado com a associação dos substratos, ela é um dos três eixos do sistema colorimétrico CIEL* a* b*, e para que um bom resultado final da cor possa ser obtido, a coordenada L* não deve ser considerada como um parâmetro individual de avaliação.

As diferenças nas coordenadas de cromaticidade a* e b* também puderam ser avaliadas. Com o aumento da espessura, independente do substrato utilizado, o eixo a* (verde-vermelho) tendeu para o verde, sendo que estas mudanças foram mais evidentes quando o S5 (disco de ouro tipo IV acabado) estava presente (TAB. 61). Esta tendência colorimétrica pode ser justificada em função de uma maior concentração de pigmentos na maior espessura. Já quando a tendência é para o vermelho, a cerâmica está sendo mais influenciada pelas ligas metálicas subjacentes, como observamos nos estudos de Terada; Maeyama; Hirayasu (1989), Douglas e Brewer (1998), Nakamura et al. (2003), Stavridakis et al. (2004).

Na coordenada b* (eixo amarelo-azul) verificou-se uma tendência para o amarelo, quando comparamos todas as associações com o padrão. A tendência para o amarelo aumenta em função do substrato, porque a amostra cerâmica se

torna mais opaca (TERADA; MAEYAMA; HIRAYASU, 1989; DOUGLAS; BREWER 1998). Porém, ao compararmos as espessuras de IPS-Empress entre si, foi possível deduzir que existe uma maior tendência para o azul, principalmente quando as associações são realizadas com os substratos polidos (S3 e S5), em função da reflexão que estes metais sofrem quando associados às cerâmicas translúcidas. (NAKAMURA et al., 2003; STAVRIDAKIS et al., 2004).

Apesar de não fazermos uma correlação estatística entre o sistema cerâmico IPS-Empress e o IPS-Empress2 associado à cerâmica Eris; por meio dos nossos resultados, observou-se que as diferenças de cor (? E) encontradas para a cerâmica IPS-Empress2+Eris foram menores que aquelas encontradas para a cerâmica IPS-Empress. As propriedades ópticas da prótese foram afetadas pela presença de uma infra-estrutura cerâmica capaz de mascarar o substrato (DOZIC et al., 2003). Isto pode ser atribuído ao fato de que, para aumentar a resistência do sistema IPS-Empress2, uma estrutura rica em dissilicato de lítio é incorporada à massa de leucita. Neste momento, partículas maiores e irregulares integram a matriz cerâmica, dificultando a transmissão e favorecendo o efeito de dispersão da luz, o que resulta, consequentemente, em uma diminuição na translucidez e aumento da opacidade da cerâmica. A leucita (utilizada no IPS-Empress) e o dissilicato de lítio (utilizado no IPS-Empress2) possuem índices de refração de 1,51 e 1,55, respectivamente. Para um máximo de reflexão e opacidade, a partícula deve ser discretamente maior que o comprimento de onda incidente e possuir um índice de refração diferente da matriz onde ela está incorporada, portanto, quanto maior o índice de refração de um material, maior o seu efeito de opacidade. (HEFFERNAN et al., 2002a, 2002b)

A maioria dos resultados encontrados para a cerâmica IPS-Empress2 e suas associações está dentro do limite de aceitabilidade (? E < 3,7), concordando com os achados de Carossa et al. (2001), que observaram que a espessura indicada pelo fabricante para o sistema IPS-Empress2, através da técnica de maquiagem (de 1,5 a 1,8mm), permitiu a influência da cor de pinos e núcleos metálicos, facilitando a percepção pelo olho humano. Quando os autores utilizaram IPS-Empress2 pela técnica estratificada, esta percepção diminuiu consideravelmente como no nosso estudo. Este fenômeno pode ser explicado pelo tamanho e estrutura das partículas de dissilicato de lítio, presentes na infra-estrutura e pelo índice de refração deste material (ROSENSTIEL; JOHNSTON, 1988; McLEAN, 2001; HEFFERNAN et al., 2002a).

À medida que a espessura de IPS-Empress2 + Eris foi aumentada, sua luminosidade diminuiu, provavelmente em função do grau de coacidade da infraestrutura e de sua capacidade de mascaramento, apesar dos valores de L* terem aumentado para todas as associações experimentais, quando comparadas com o padrão. A relação inversa entre espessura e valor de L* está em função do coeficiente de reflexão e absorção da cerâmica dental. (DOUGLAS; PRZBYLSKA, 1999). Portanto, a opção por um sistema cerâmico que possua uma infra-estrutura cerâmica deve ser considerada na presença de dentes escurecidos, pinos ou núcleos metálicos, porque, quando em espessura adequada, possui a capacidade de mascarar o efeito do substrato em função de sua cor, densidade e grau de opacidade (HEFFERNAN et al., 2002b; KOUTAYAS et al., 2003).

Os substratos utilizados com a cerâmica IPS-Empress2 + Eris não apresentaram diferenças estatísticas entre si e nenhuma interação espessura versus substrato foi observada, fazendo com que as alterações na luminosidade sejam de total responsabilidade da cerâmica aplicada. Este fato pode ser explicado por meio dos resultados de Carossa et al. (2001), Nakamura et al. (2002), que encontraram uma diminuição na luminosidade da cerâmica IPS-Empress2 com o aumento da espessura, justificada pela capacidade da infra-estrutura cerâmica em absorver a luz, bloqueando a sua chegada até o substrato.

Os resultados encontrados para as coordenadas a* e b* demonstraram, com o aumento da espessura de cerâmica, uma discreta tendência para o vermelho e para o amarelo respectivamente, provavelmente em função da maior concentração de pigmentos na matriz cerâmica. (TAB. 66 e 67). Nakamura et al. (2002) encontraram resultados similares apenas quando substratos de ouro polido foram utilizados. Para as ligas de prata-paládio, estas coordenadas mostraram tendências inversas, o que foi justificado pelos autores como a influência da cor desta liga nas coordenadas de cromaticidade. Dozic et al. (2003) reforçam que a direção das coordenadas a* e b* estão na dependência da cor da cerâmica utilizada, portanto, como cerâmicas escuras possuem mais pigmentos, maiores valores de a* e b* podem ser encontrados.

Ainda é importante considerar que devido aos diferentes aparelhos colorimétricos utilizados, geometrias de medição, iluminantes variados e a presença de brilho e texturização superficial, os parâmetros para comparação dos resultados instrumentais podem ficar comprometidos. Colorímetros possuem filtros de

referência de cor diferentes dos espectrofotômetros, possibilitando o fenômeno do metamerismo (KNISPEL, 1991). Já os espectrofotômetros podem ter diferentes geometrias de medição que vão desde feixes colimados até esferas de integração. Uma falta de calibragem ou calibragem indevida do aparelho, distanciamento da amostra durante a mensuração propiciando o fenômeno de edge-loss (perda de luz pela extremidade da amostra), falta de linearidade do aparelho com a amostra, interferência do fundo em amostras translúcidas, inclusão ou não da componente especular, interpretação do efeito do raio ultravioleta e comparação de resultados com diferentes iluminantes, são possíveis erros que podem ocorrer devido à falta de uma metodologia instrumental consagrada. (SEGUI; JOHNSTON, O'BRIEN, 1989; ISHIKAWA-NAGAI et al., 2005). Em nosso estudo, a componente especular inclusa (SCI) foi considerada, porque tanto os substratos polidos quanto os discos glazeados possuem brilho na sua condição clínica. (KUEHNI; MARCUS, 1979, SEGUI; JOHNSTON; O'BRIEN, 1989; DOZIC et al., 2003). O iluminante D65 foi selecionado, porque corresponde à fonte de luz utilizada em Odontologia para a análise visual da cor. (KNISPEL, 1991; SPROULL, 2001b; PARAVINA, 2002).

Pesquisas são necessárias para investigar a magnitude das alterações de cor nas condições clínicas, principalmente porque aplicações clínicas da tecnologia de quantificação da cor e suas diferenças necessitam de mais parâmetros que possam estabelecer alguma significância visual. Como o julgamento final da avaliação colorimétrica é visual, é necessário continuar a estabelecer uma relação, a mais exata possível, entre análise visual e instrumental.

7 CONCLUSÕES

Os resultados obtidos neste estudo sugerem que o tipo do substrato deve ser sempre considerado porque exerce influência na cor final de restaurações cerâmicas, principalmente para o sistema PS-Empress. Quando o substrato possuir uma cor próxima à da cerâmica, a espessura preconizada pelo fabricante (1,5mm) pode ser utilizada para qualquer dos sistemas testados (IPS-Empress e IPS-Empress2 + Eris). Porém, se pinos e núcleos metálicos estiverem presentes, tornase necessário criar um espaço suficiente para mascarar o substrato (2,0mm) e optar por um sistema restaurador que apresente uma infra-estrutura cerâmica, como o IPS-Empress2 + Eris.

REFERÊNCIAS 8

ARMITAGE, P.; BERRY, G.; MATTHEUS, J. N. S. **Statistical methods in medical research.** 4. ed. Oxford: Blackwell Science, 2002. 817p.

BARATH, V. S. et al. Spectrophotometric analysis of all-ceramic materials and their interaction with luting agents and different backgrounds. **Adv. Dent. Res,** Washington, v.17, p.55-60, Dec. 2003.

BREWER, J.D. et al. Spectrometric analysis of the influence of metal substrates on the color of metal-ceramic restorations. **J. Dent. Res.,** Washington, v.64, n.1, p.74-77, Jan. 1985.

CAROSSA, S. et al. Influence of posts and cores on light transmission through different all-ceramic crowns: spectrophotometric and clinical evaluation. **Int. J. Prosthodont.**, Lombard, v.14, n.1, p. 9-14, Jan./Feb. 2001.

CHU, S.J.; DEVIGUS, A.; MIELESZKO, A. J. Elements affecting color. In:_____. **Fundamentals of color:** shade matching and communication in esthetic dentistry. Chicago: Quintessence, 2004. p.19-49.

CRISPIN, B. J.; OKAMOTO, S. K.; GLOBE, H. Effect of porcelain crown substructures on visually perceivable value. **J. Prosthet. Dent.,** St Louis, v.66, n.2, p.209-212, Aug. 1991.

DOUGLAS, R. D.; BREWER, J. D. Acceptability of shade differences in metal ceramic crowns. **J. Prosthet. Dent.**, St Louis, v.79, n.3, p.254-260, Mar. 1998.

DOUGLAS, R. D.; PRZYBYLSKA, M. Predicting porcelain thickness required for shade matches. **J. Prosthet. Dent.**, St Louis, v.82, n.2, p.143-149, Aug. 1999.

DOZIC, A. et al. The influence of porcelain layer thickness on the final shade of ceramic restorations. **J. Prosthet. Dent.,** St Louis, v.90, n.6, p.563-570, Dec. 2003.

_

⁸ Baseada na NBR 6023/2002 da ABTN.

HEFFERNAN, M.J. et al. Relative translucency of six all-ceramic systems. Part I: Core materials. **J. Prosthet. Dent.**, St Louis, v.88, n.1, p.4-9, July 2002a.

HEFFERNAN, M.J. et al. Relative translucency of six all-ceramic systems. Part II: Core and venner materials. **J. Prosthet. Dent.,** St Louis, v.88, n.1, p.10-15, July 2002b.

HOLLOWAY, J.; MILLER, R. B. The effect of core translucency on the aesthetics of all-ceramic restorations. **Pract. Periodontics Aesthetic Dent.**, New Jersey, v.9, n.5, p. 567-574, 1997.

ISHIKAWA – NAGAI, S. et al. Reproducibility of tooth colour gradation using a computer color-matching technique applied to ceramic restorations. **J. Prosthet. Dent.,** St Louis, v.93, n.2, p.129-137, Feb. 2005.

JACOBS, S. H. et al. Effect of porcelain thickness and type of metal-ceramic alloy on color. **J. Prosthet. Dent.**, St Louis, v.57, n.2, p.138-144, Feb. 1987.

JOHNSTON, W. M.; KAO, E. C. Assessment of appearance match by visual observation and clinical colorimetry. **J. Dent. Res.**, Washington, v.68, n.5, p.819-822, May 1989.

JOINER, A. Tooth colour: a review of the literature. **J. Dent**., Guilford, v.32, p. 3-12, 2004. Supplement 1.

JORGENSON, M. W.; GOODKIND, R. J. Spectrophotometric of five porcelain shades relative to the dimensions of color, porcelain thickness and repeated firings. **J. Prosthet. Dent.,** St Louis, v.42, n.1, p.96-105, July 1979.

KNISPEL, G. Factors affecting the process of color matching restorative materials to natural teeth. **Quintessence Int.**, Berlim, v. 22, n. 7, p. 525-531, 1991.

KOURTIS, S.G.; TRIPODAKIS, A.P.; DOUKOUDAKIS. Spectrophotometric evaluation of the optical influence of different metal alloys and porcelains in the metal-ceramic complex. **J. Prosthet. Dent.,** St Louis, v.92, n.5, p.477-485, Nov. 2004.

KOUTAYAS, S. et al. Colorimetric evaluation of the five different restorative materials on the color of veneered densely sintered alumina. **J. Esthetic Rest. Dent.,** Ontario, v. 15, n. 6, p. 353-360, 2003.

KUEHNI, R. G.; MARCUS, R. T. An experiment in visual scaling of small color differences. **Color Res. Appl.**, Virginia, v. 4, n. 2, p. 83-91, Summer 1979. McLEAN, J. W. Evaluation of dental ceramic in the twentieth century. **J. Prosthet. Dent.**, St Louis, v. 85, n. 1, p. 61-66, Jan. 2001.

MICHALAKIS, K. X. et al. Light transmission of posts and cores used for the anterior esthetic region. **Int. J. Periodontics Restorative Dent.**, Chicago, v. 24, n.5, p. 462-469, Oct. 2004.

NAKAMURA, T. et al. Influence of abutment substrate and ceramic thickness on the colour of heat-presses ceramic crowns. **J. Oral Rehabil.**, Oxford, v. 29, n. 9, p. 805-809, Sept. 2002.

NAKAMURA, T. et al. Influence of abutment substrates on the colour of metal-free polymer crowns. **J. Oral Rehabil.**, Oxford, v.30, n.2, p. 184-188, Feb. 2003.

O'BRIEN, W.J.; GROH, C.L.; BOENKE, K.M. A one-dimensional color order system for dental shade guides. **Dent. Mater**, Washington, v. 5, n 6, p. 371-374, Nov. 1989.

PARAVINA, R.D. Evaluation of a newly developed visual shade-matching apparatus. **Int. J. Prosthodont.**, Lombard, v. 15, n. 6, p. 528-234, 2002.

PETTER, C. O.; GLIESE, R. **Fundamentos em Colorimetria**. Porto Alegre: UFRGS, 2000. Apostila.

RAIGRODSKI, A. J. Contemporary all-ceramic fixed partial dentures: a review. **Dent. Clin. North. Am.**, Philadelphia, v. 48, n. 2, p. 531-544, Apr. 2004.

ROSENSTIEL, S.F.; JOHNSTON, W. M. The effects of manipulative variables on the color of ceramic metal restorations. **J. Prosthet. Dent.**, St Louis, v.60, n.3, p.297-303, Sept. 1988.

SEGUI, R. R.; JOHNSTON, W. M.; O'BRIEN, W. J. Spectrophotometric analysis of color differences between porcelain systems. **J. Prosthet. Dent.,** St Louis, v.56, n.1, p.35-40, July 1986.

SEGUI, R. R.; JOHNSTON, W. M.; O'BRIEN, W. J. Performance assessment of colorimetric devices on dental porcelains. **J. Dent. Res.,** Washington, v.68, n.12, p.1755-1759, Dec. 1989.

SEGUI, R. R.; HEWLETT, E. R.; KIM, J. Visual and instrumental colorimetric assessments of small color differences on translucent dental porcelain. **J. Dent. Res.,** Washington, v.68, n.12, p.1760-1764, Dec. 1989.

SIEBER, C. A Key to enhancing natural esthetics in anterior restorations: the light-optical behavior of spinell luminaries. **J. Esthet. Dent.,** Ontario, v.8, n.3, p.101-106, 1996.

SPROULL, R. C. Color matching in dentistry. Part I. The three-dimensional nature of colour. **J. Prosthet. Dent.**, St Louis, v. 86, n. 5, p. 453-457, Nov. 2001a.

SPROULL, R. C. Color matching in dentistry. Part II. Practical applications of the organization of color. **J. Prosthet. Dent.,** St Louis, v. 86, n. 5, p. 458-464, Nov. 2001b.

STAVRIDAKIS, M. M. et al. Effect of different high-palladium metal-ceramic alloys on the color of opaque and dentin porcelain. **J. Prosthet. Dent.**, St Louis, v.92, n.2, p.170-178, Aug. 2004.

TEN BOSCH, J. J.; COOPS, J. C. Tooth color and reflectance as related to light scattering and enamel hardness. **J. Dent. Res.**, Washington, v.74, nl, p.374-380, Jan. 1995.

TERADA, Y.; MAEYAMA, S.; HIRAYASU, R. The influence of different thicknesses of dentin porcelain on the color reflected from thin opaque porcelain fused to metal. **Int. J. Prosthodont.**, Lombard, v.2, n.4, p. 352-356, July/Aug. 1989.

VAN DER BURGT, T. P. et al. A comparasion of new and convencional methods for quantification of tooth color. **J. Prosthet. Dent.,** St Louis, v.63, n.2, p.155-162, Feb. 1990.

VICHI, A.; FERRARI, M.; DAVIDSON, C. L. Influence of ceramic and cement thickness on the masking of various types of opaque posts. **J. Prosthet. Dent.**, St Louis, v.83, n.4, p.412-417, Apr. 2000.

YAMAMOTO, M. **Metal-ceramics principles and methods of Makoto Yamamoto.** Chicago: Quintessence, 1985. p.219-347.

APÊNDICE A – Apresentação das TAB. 2, 4 e 6.

Tabela 2 - Cálculo do ? S (S1)

Tubble 2	- Caicaic	<i>,</i> 40 . 0 (• . ,				
	L*	a*	B*	L*	a*	b*	?S
S1 1/2	60,0019	1,812	8,6325	60,0218	1,7867	8,6031	0,043594
S1 1/3	60,0019	1,812	8,6325	59,8639	1,8362	8,6942	0,15309
S1 1/4	60,0019	1,812	8,6325	60,0284	1,8264	8,6323	0,03016
S1 1/5	60,0019	1,812	8,6325	59,9109	1,8267	8,6352	0,092219
S1 2/3	60,0218	1,7867	8,6031	59,8639	1,8362	8,6942	0,188896
S1 2/4	60,0218	1,7867	8,6031	60,0284	1,8264	8,6323	0,049722
S1 2/5	60,0218	1,7867	8,6031	59,9109	1,8267	8,6352	0,122185
S1 3/4	59,8639	1,8362	8,6942	60,0284	1,8264	8,6323	0,176034
S1 3/5	59,8639	1,8362	8,6942	59,9109	1,8267	8,6352	0,076028
S1 4/5	60,0284	1,8264	8,6323	59,9109	1,8267	8,6352	0,117536
-						Média	0,104947

Tabela 4 - Cálculo do ? S (S2)

Tabela 4										
	L*	a*	B*		L*	a*	b*	?S		
S2 1/2	74,0971	2,2114	7,1109		74,0668	2,2229	7,0738	0,049262		
S2 1/3	74,0971	2,2114	7,1109		74,5543	1,9876	6,9485	0,534315		
S2 1/4	74,0971	2,2114	7,1109		74,9796	2,026	6,9634	0,913748		
S2 1/5	74,0971	2,2114	7,1109		74,5477	1,9106	6,9549	0,563788		
S2 2/3	74,0668	2,2229	7,0738		74,5543	1,9876	6,9485	0,555628		
S2 2/4	74,0668	2,2229	7,0738		74,9796	2,026	6,9634	0,940299		
S2 2/5	74,0668	2,2229	7,0738		74,5477	1,9106	6,9549	0,585605		
S2 3/4	74,5543	1,9876	6,9485		74,9796	2,026	6,9634	0,42729		
S2 3/5	74,5543	1,9876	6,9485		74,5477	1,9106	6,9549	0,077547		
S2 4/5	74,9796	2,026	6,9634		74,5477	1,9106	6,9549	0,447132		
							Média	0,509461		

Tabela 6 - Cálculo do ? S (S3)

		(,				
	L*	a*	B*	L*	a*	b*	?S
S3 1/2	79,5575	2,3938	7,6933	79,4214	2,3983	7,7042	0,13661
S3 1/3	79,5575	2,3938	7,6933	79,5822	2,3329	7,6758	0,068008
S3 1/4	79,5575	2,3938	7,6933	79,6243	2,356	7,7411	0,090421
S3 1/5	79,5575	2,3938	7,6933	80,0333	2,3279	7,5861	0,492159
S3 2/3	79,4214	2,3983	7,7042	79,5822	2,3329	7,6758	0,175899
S3 2/4	79,4214	2,3983	7,7042	79,6243	2,356	7,7411	0,210522
S3 2/5	79,4214	2,3983	7,7042	80,0333	2,3279	7,5861	0,627157
S3 3/4	79,5822	2,3329	7,6758	79,6243	2,356	7,7411	0,081056
S3 3/5	79,5822	2,3329	7,6758	80,0333	2,3279	7,5861	0,459959
S3 4/5	79,6243	2,356	7,7411	80,0333	2,3279	7,5861	0,438287
						Média	0,278008

APÊNDICE B – Apresentação das TAB. 8 e 10.

Tabela 8 - Cálculo do ? S (S4)

L* a* B* L* a* b* ?S S4 1/2 75,2141 4,3476 14,7539 76,2992 4,2825 14,4788 1,121321 S4 1/3 75,2141 4,3476 14,7539 75,9509 4,4598 14,6157 0,757999 S4 1/4 75,2141 4,3476 14,7539 75,464 4,7674 14,9473 0,525438 S4 1/5 75,2141 4,3476 14,7539 76,4932 4,8423 14,6395 1,376195 S4 2/3 76,2992 4,2825 14,4788 75,9509 4,4598 14,6157 0,414113 S4 2/4 76,2992 4,2825 14,4788 75,464 4,7674 14,9473 1,073396 S4 2/5 76,2992 4,2825 14,4788 76,4932 4,8423 14,6395 0,61387 S4 3/4 75,9509 4,4598 14,6157 75,464 4,7674 14,9473 0,664566 S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 <th>Tabela 0</th> <th>Odlodic</th> <th>, ao . o (</th> <th>O+)</th> <th></th> <th></th> <th></th> <th></th>	Tabela 0	Odlodic	, ao . o (O+)				
S4 1/3 75,2141 4,3476 14,7539 75,9509 4,4598 14,6157 0,757999 S4 1/4 75,2141 4,3476 14,7539 75,464 4,7674 14,9473 0,525438 S4 1/5 75,2141 4,3476 14,7539 76,4932 4,8423 14,6395 1,376195 S4 2/3 76,2992 4,2825 14,4788 75,9509 4,4598 14,6157 0,414113 S4 2/4 76,2992 4,2825 14,4788 75,464 4,7674 14,9473 1,073396 S4 2/5 76,2992 4,2825 14,4788 76,4932 4,8423 14,6395 0,61387 S4 3/4 75,9509 4,4598 14,6157 75,464 4,7674 14,9473 0,664566 S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 14,6395 0,66405 S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849		L*	a*	B*	L*	a*	b*	?S
S4 1/4 75,2141 4,3476 14,7539 75,464 4,7674 14,9473 0,525438 S4 1/5 75,2141 4,3476 14,7539 76,4932 4,8423 14,6395 1,376195 S4 2/3 76,2992 4,2825 14,4788 75,9509 4,4598 14,6157 0,414113 S4 2/4 76,2992 4,2825 14,4788 75,464 4,7674 14,9473 1,073396 S4 2/5 76,2992 4,2825 14,4788 76,4932 4,8423 14,6395 0,61387 S4 3/4 75,9509 4,4598 14,6157 75,464 4,7674 14,9473 0,664566 S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 14,6395 0,66405 S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849	S4 1/2	75,2141	4,3476	14,7539	76,2992	4,2825	14,4788	1,121321
S4 1/5 75,2141 4,3476 14,7539 76,4932 4,8423 14,6395 1,376195 S4 2/3 76,2992 4,2825 14,4788 75,9509 4,4598 14,6157 0,414113 S4 2/4 76,2992 4,2825 14,4788 75,464 4,7674 14,9473 1,073396 S4 2/5 76,2992 4,2825 14,4788 76,4932 4,8423 14,6395 0,61387 S4 3/4 75,9509 4,4598 14,6157 75,464 4,7674 14,9473 0,664566 S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 14,6395 0,66405 S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849	S4 1/3	75,2141	4,3476	14,7539	75,9509	4,4598	14,6157	0,757999
S4 2/3 76,2992 4,2825 14,4788 75,9509 4,4598 14,6157 0,414113 S4 2/4 76,2992 4,2825 14,4788 75,464 4,7674 14,9473 1,073396 S4 2/5 76,2992 4,2825 14,4788 76,4932 4,8423 14,6395 0,61387 S4 3/4 75,9509 4,4598 14,6157 75,464 4,7674 14,9473 0,664566 S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 14,6395 0,66405 S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849	S4 1/4	75,2141	4,3476	14,7539	75,464	4,7674	14,9473	0,525438
S4 2/4 76,2992 4,2825 14,4788 75,464 4,7674 14,9473 1,073396 S4 2/5 76,2992 4,2825 14,4788 76,4932 4,8423 14,6395 0,61387 S4 3/4 75,9509 4,4598 14,6157 75,464 4,7674 14,9473 0,664566 S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 14,6395 0,66405 S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849	S4 1/5	75,2141	4,3476	14,7539	76,4932	4,8423	14,6395	1,376195
S4 2/5 76,2992 4,2825 14,4788 76,4932 4,8423 14,6395 0,61387 S4 3/4 75,9509 4,4598 14,6157 75,464 4,7674 14,9473 0,664566 S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 14,6395 0,66405 S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849	S4 2/3	76,2992	4,2825	14,4788	75,9509	4,4598	14,6157	0,414113
S4 3/4 75,9509 4,4598 14,6157 75,464 4,7674 14,9473 0,664566 S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 14,6395 0,66405 S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849	S4 2/4	76,2992	4,2825	14,4788	75,464	4,7674	14,9473	1,073396
S4 3/5 75,9509 4,4598 14,6157 76,4932 4,8423 14,6395 0,66405 S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849	S4 2/5	76,2992	4,2825	14,4788	76,4932	4,8423	14,6395	0,61387
S4 4/5 75,464 4,7674 14,9473 76,4932 4,8423 14,6395 1,076849	S4 3/4	75,9509	4,4598	14,6157	75,464	4,7674	14,9473	0,664566
	S4 3/5	75,9509	4,4598	14,6157	76,4932	4,8423	14,6395	0,66405
Média 0,82878	S4 4/5	75,464	4,7674	14,9473	76,4932	4,8423	14,6395	1,076849
	-						Média	0,82878

Tabela 10 - Cálculo do ? S (S5)

Tabela I	Tabela 10 - Calculo do (5 (55)									
	L*	a*	B*		L*	a*	b*	?S		
S5 1/2	84,9229	4,1034	14,7177		84,9842	4,1108	14,7866	0,092518		
S5 1/3	84,9229	4,1034	14,7177		84,6905	4,228	14,713	0,263737		
S5 1/4	84,9229	4,1034	14,7177		85,0228	4,3124	14,8599	0,271812		
S5 1/5	84,9229	4,1034	14,7177		84,9963	4,2788	14,8034	0,20856		
S5 2/3	84,9842	4,1108	14,7866		84,6905	4,228	14,713	0,324673		
S5 2/4	84,9842	4,1108	14,7866		85,0228	4,3124	14,8599	0,217957		
S5 2/5	84,9842	4,1108	14,7866		84,9963	4,2788	14,8034	0,169271		
S5 3/4	84,6905	4,228	14,713		85,0228	4,3124	14,8599	0,372996		
S5 3/5	84,6905	4,228	14,713		84,9963	4,2788	14,8034	0,322903		
S5 4/5	85,0228	4,3124	14,8599		84,9963	4,2788	14,8034	0,070876		
							Média	0,23153		

APÊNDICE C – Apresentação das TAB. 11 a 15.

Tabela 11 - Valores das cinco mensurações para os discos C1a

C1a	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	61,4142	61,1068	60,7413	61,81	61,8717	61,3888
a*	0,6245	0,5862	0,5673	0,5606	0,5727	0,58226
b*	12,605	12,4574	12,1493	12,523	12,417	12,43034

Tabela 12 - Valores das cinco mensurações para os discos C1b

C1b	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	61,4018	61,379	61,2146	61,3628	61,3924	61,35012
a*	0,5381	0,5911	0,5812	0,5443	0,5459	0,56012
b*	12,4898	12,7005	12,7404	12,4177	12,3423	12,53814

Tabela 13 - Valores das cinco mensurações para os discos C1c

C1c	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	60,291	59,2275	59,8587	60,1366	60,0243	59,90762
a*	0,5529	0,5411	0,5176	0,5671	0,4856	0,53286
b*	12,2716	12,0339	11,9568	12,3613	11,9972	12,12416

Tabela 14 - Valores das cinco mensurações para os discos C1d

C1d	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	61,5096	61,2355	59,189	57,0375	57,4617	59,28666
a*	0,4036	0,4305	0,5195	0,6084	0,5561	0,50362
b*	11,9023	11,7346	11,5164	11,4148	11,4114	11,5959

Tabela 15 - Valores das cinco mensurações para os discos C1e

C1e	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	62,2505	61,8726	59,0893	61,6974	61,8703	61,35602
a*	0,5407	0,5909	0,6493	0,4862	0,5845	0,57032
b*	12,1617	12,4395	11,9639	12,0331	12,8862	12,29688

APÊNDICE D – Apresentação das TAB. 17 a 21.

Tabela 17 - Valores das cinco mensurações para os discos C4a

_	1 4 5 5 1 4 1 1 4 1 5 1 5 5 6						
	C4a	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
	L*	66,5485	66,3697	66,2116	66,7364	66,7485	66,52294
	a*	0,3353	0,3359	0,3793	0,3508	0,3116	0,34258
	b*	13,3483	13,2027	13,199	13,3283	13,1719	13,25004

Tabela 18 - Valores das cinco mensurações para os discos C4b

C4b	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	66,3203	66,2235	66,409	66,1443	66,3833	66,29608
a*	0,6574	0,5824	0,513	0,5741	0,523	0,56998
b*	13,1365	12,9371	12,9223	13,2911	13,0921	13,07582

Tabela 19 - Valores das cinco mensurações para os discos C4c

C4c	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	63,8519	63,3131	63,6165	63,8478	63,3092	63,5877
a*	1,3175	1,5583	1,4686	1,3967	1,6166	1,47154
b*	13,9945	14,2008	14,152	14,1022	14,1669	14,12328

Tabela 20 - Valores das cinco mensurações para os discos C4d

C4d	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	64,3118	64,5912	64,6437	64,5733	64,6731	64,55862
a*	1,0576	1,0618	1,0551	1,063	1,0646	1,06042
b*	13,7786	13,9099	13,904	14,0004	13,6931	13,8572

Tabela 21 - Valores das cinco mensurações para os discos C5e

C4e	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
L*	64,3612	64,5836	64,3977	65,458	64,8998	64,74006
a*	0,6628	0,7023	0,5991	0,2122	0,3269	0,50066
b*	12,913	13,1247	12,7693	12,4788	12,5617	12,7695

APÊNDICE E – Apresentação das TAB. 23 e 24.

Tabela 23 -Valores das cinco mensurações para as associações S1+C1(a, b, c, d, e)

rabela 23 -	vaiores das	<u>cinco men</u>	surações p	<u>para as as</u>	sociações	51+C1(a,	b, c, a, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S1 + C1a	L*	64,1252	64,1997	64,2042	64,1521	64,1727	64,17078
	a*	1,7394	1,723	1,7222	1,7656	1,7488	1,7398
	b*	13,3931	13,2039	13,2886	13,4404	13,4591	13,35702
S1 + C1b	L*	64,0077	64,055	64,2332	63,8269	63,8091	63,98638
	a*	1,7708	1,7351	1,7305	1,8026	1,8343	1,77466
	b*	13,6331	13,5509	13,766	13,8206	13,7059	13,6953
S1 + C1c	L*	64,1875	64,0861	64,0853	64,1025	64,0552	64,10332
	a*	1,6412	1,7195	1,7221	1,7114	1,7229	1,70342
	b*	13,1059	13,2875	13,1395	13,3239	13,2263	13,21662
S1 + C1d	L*	65,0476	64,7775	65,001	64,7811	64,5645	64,83434
	a*	1,5467	1,534	1,5016	1,5129	1,5584	1,53072
	b*	12,7547	12,6064	12,5549	12,5893	12,7291	12,64688
S1 + C1e	L*	64,2938	64,4592	64,369	64,2306	64,9002	64,45056
	a*	1,6989	1,6724	1,6626	1,7138	1,6178	1,6731
	b*	13,3659	13,5523	13,3768	13,629	13,1345	13,4117

Tabela 24 -Valores das cinco mensurações para as associações S1+C2(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S1 + C2a	L*	65,616	65,8229	65,2199	65,6575	65,8377	65,6308
	a*	1,2383	1,2101	1,0789	1,2663	1,2461	1,20794
	b*	12,688	12,5529	11,8967	13,1068	12,6419	12,57726
S1 + C2b	L*	65,2124	65,0393	65,1159	65,0108	65,0496	65,0856
	a*	1,3572	1,4257	1,4193	1,4669	1,4354	1,4209
	b*	13,0336	13,2596	13,7033	13,582	13,7077	13,45724
S1 + C2c	L*	66,2202	66,1588	65,3281	66,1907	65,5945	65,89846
	a*	1,2652	1,2156	1,2489	1,2409	1,2438	1,24288
	b*	12,9523	13,0203	12,7864	13,0153	12,7399	12,90284
S1 + C2d	L*	67,0716	66,5834	67,2385	67,0758	67,0085	66,99556
	a*	1,3551	1,623	1,4397	1,3488	1,5335	1,46002
	b*	13,7919	15,6372	14,3073	13,9739	15,0759	14,55724
S1 + C2e	L*	66,1163	66,0763	66,4521	66,6779	66,6748	66,39948
	a*	1,1122	1,0977	0,9492	0,993	1,0266	1,03574
	b*	11,7842	11,8897	11,1087	11,2147	11,2908	11,45762

APÊNDICE F – Apresentação das TAB. 25 e 26.

Tabela 25 -Valores das cinco mensurações para as associações S1+C3(a, b, c, d, e)

Tabela 25 -	valules uas	CITICO ITI C IT	suraçues p	Jaia as as	<u>suciações</u>	31+63(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S1 + C3a	L*	66,4472	66,3512	66,5201	66,3106	66,0756	66,34094
	a*	0,9568	0,9811	0,9734	1,0862	1,1653	1,03256
	b*	12,638	12,7431	12,5363	12,9644	13,2704	12,83044
S1 + C3b	L*	65,9585	65,5758	66,0154	65,7575	65,7886	65,81916
	a*	1,3025	1,4401	1,299	1,3685	1,4031	1,36264
	b*	14,0651	14,5692	13,9249	14,5569	14,3744	14,2981
S1 + C3c	L*	66,6473	66,5812	66,4008	66,635	66,3986	66,53258
	a*	0,9285	0,9122	0,8628	0,8962	0,933	0,90654
	b*	12,1323	12,0168	11,7808	11,9914	12,4163	12,06752
S1 + C3d	L*	65,9398	65,8643	65,9886	65,8728	65,8509	65,90328
	a*	1,1923	1,2424	1,1786	1,1528	1,1986	1,19294
	b*	13,4652	12,9249	12,8467	12,7961	13,2198	13,05054
S1 + C3e	L*	64,7351	64,6689	64,6853	65,0373	64,9967	64,82466
	a*	1,4844	1,4499	1,5199	1,2806	1,2668	1,40032
	b*	14,4567	14,3644	14,7443	13,9012	13,5624	14,2058

Tabela 26 -Valores das cinco mensurações para as associações S1+C4(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S1 + C4a	L*	69,3956	69,4802	69,4999	69,4666	69,7365	69,51576
	a*	0,5821	0,5297	0,5247	0,5998	0,6963	0,58652
	b*	13,6966	13,6243	13,2303	13,8065	14,1543	13,7024
S1 + C4b	L*	69,0236	68,3167	68,5359	69,1574	68,8772	68,78216
	a*	0,7611	0,9428	0,8962	0,7194	0,8689	0,83768
	b*	13,209	13,5677	13,4811	12,9762	13,4438	13,33556
S1 + C4c	L*	66,117	65,9777	66,4366	65,9751	66,0997	66,12122
	a*	1,9302	1,941	1,759	1,966	1,9684	1,91292
	b*	14,5042	14,532	14,5329	14,4917	14,573	14,52676
S1 + C4d	L*	67,1722	67,3156	67,2611	67,2501	67,3578	67,27136
	a*	1,2676	1,2614	1,2306	1,208	1,2595	1,24542
	b*	14,1181	13,9201	13,8917	13,9443	13,9599	13,96682
S1 + C4e	L*	67,6698	67,4658	67,6038	67,9808	67,4928	67,6426
	a*	0,7365	0,8228	0,7768	0,6481	0,8078	0,7584
	b*	12,901	13,0199	12,9236	12,8029	13,0186	12,9332

APÊNDICE G – Apresentação das TAB. 27 e 28.

Tabela 27 -Valores das cinco mensurações para as associações S1+C5(a, b, c, d, e)

Tabela 27 -	valores das	cinco men	surações	Jaia as as	sociações	31+C5(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S1 + C5a	L*	66,0047	65,9752	66,1042	65,9417	66,0835	66,02186
	a*	1,9504	1,9158	1,8803	1,9414	1,8727	1,91212
	b*	15,1471	15,1629	15,055	15,1909	15,0271	15,1166
S1 + C5b	L*	66,4227	66,4761	66,628	66,542	66,6248	66,53872
	a*	2,1481	2,1303	2,1388	2,1355	2,1341	2,13736
	b*	15,8583	15,8781	15,9387	15,8567	15,9951	15,90538
S1 + C5c	L*	66,0527	66,6287	66,6865	66,6501	66,5589	66,51538
	a*	2,1459	2,0399	1,9866	2,0057	2,0482	2,04526
	b*	15,4985	15,393	15,2929	15,314	15,3514	15,36996
S1 + C5d	L*	66,1652	66,4609	66,2068	66,047	66,1309	66,20216
	a*	1,9487	1,9589	1,9746	2,111	2,0701	2,01266
	b*	15,1665	15,2294	15,2398	15,3976	15,43	15,29266
S1 + C5e	L*	65,437	64,8703	65,8158	64,9059	64,7774	65,16128
	a*	2,0693	2,1727	1,9936	2,1619	2,2543	2,13036
	b*	15,1371	15,1529	15,1179	15,1278	15,5411	15,21536

Tabela 28 -Valores das cinco mensurações para as associações S1+C6(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S1 + C6a	L*	64,4608	64,862	65,0151	64,704	64,5638	64,72114
	a*	2,9556	2,8335	2,8009	2,8923	2,8888	2,87422
	b*	14,7667	14,9857	14,3904	14,2383	14,5972	14,59566
S1 + C6b	L*	65,4716	65,6081	65,5326	65,4921	65,4283	65,50654
	a*	2,7525	2,7347	2,7272	2,8412	2,8632	2,78376
	b*	14,6254	14,4374	14,41	14,9433	14,9643	14,67608
S1 + C6c	L*	64,1497	64,0683	64,1123	64,2043	64,2173	64,15038
	a*	3,1171	2,9972	3,1012	3,1081	3,1121	3,08714
	b*	15,0495	14,6067	14,9946	15,0546	15,0421	14,9495
S1 + C6d	L*	64,412	64,2718	64,458	64,3648	64,5981	64,42094
	a*	2,9958	3,0465	2,9198	2,9979	2,966	2,9852
	b*	14,6225	14,8376	14,4647	14,662	13,9784	14,51304
S1 + C6e	L*	63,8588	63,9942	63,7809	63,8206	63,7668	63,84426
	a*	2,9153	2,8631	2,9486	2,9106	2,9406	2,91564
	b*	14,5389	14,5266	14,6505	14,6184	14,634	14,59368

APÊNDICE H – Apresentação das TAB. 30 e 31.

Tabela 30 -Valores das cinco mensurações para as associações S2+C1(a, b, c, d, e)

Tabela 30 -	valules uas	CITICO ITI C IT	suraçues p	Jaia as as	<u>suciações</u>	32+01(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S2 + C1a	L*	64,5935	64,6287	64,617	64,5974	64,6078	64,60888
	a*	1,3621	1,3897	1,3457	1,414	1,3287	1,36804
	b*	13,2556	13,305	13,0974	13,3793	13,1811	13,24368
S2 + C1b	L*	64,5493	64,2997	64,2776	64,418	64,4103	64,39098
	a*	1,2767	1,3026	1,3133	1,2779	1,2756	1,28922
	b*	13,121	13,2505	13,1754	13,0559	13,1361	13,14778
S2 + C1c	L*	64,6868	64,711	64,6504	64,6221	64,6416	64,66238
	a*	1,1897	1,2665	1,226	1,2624	1,2202	1,23296
	b*	13,1261	13,2518	13,0752	13,1714	13,0512	13,13514
S2 + C1d	L*	64,9633	64,8838	65,2393	65,1704	65,2497	65,1013
	a*	1,1748	1,1879	1,1109	1,1794	1,0939	1,14938
	b*	12,5901	12,5729	12,4386	12,6457	12,3989	12,52924
S2 + C1e	L*	64,769	65,0113	64,9011	64,8254	64,8551	64,87238
	a*	1,3278	1,3024	1,2569	1,3097	1,2842	1,2962
	b*	13,5633	13,483	13,1624	13,1696	13,3243	13,34052

Tabela 31 -Valores das cinco mensurações para as associações S2+C2(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S2 + C2a	L*	66,0128	65,9513	66,0725	65,7221	65,9559	65,94292
	a*	0,9748	0,965	1,0302	1,0652	1,036	1,01424
	b*	12,3723	12,3336	12,8716	12,9424	12,8382	12,67162
S2 + C2b	L*	65,4658	65,5038	65,464	65,3925	65,4966	65,46454
	a*	0,9463	0,9142	0,9614	1,0286	0,9499	0,96008
	b*	12,715	12,5138	12,7206	13,1029	12,4656	12,70358
S2 + C2c	L*	65,24	66,2366	65,6691	65,2312	65,7776	65,6309
	a*	0,8972	0,9925	0,9236	0,9238	0,9896	0,94534
	b*	12,3936	12,9057	12,6995	12,6147	12,7821	12,67912
S2 + C2d	L*	67,2004	67,0235	67,1266	66,8388	66,9283	67,02352
	a*	1,1723	1,1058	1,0789	1,063	0,9783	1,07966
	b*	14,7205	14,2353	14,0138	13,7711	13,6541	14,07896
S2 + C2e	L*	65,8774	66,2173	65,8606	65,8693	65,6772	65,90036
	a*	0,766	0,7302	0,7518	0,7417	0,788	0,75554
	b*	12,0052	11,7662	11,9504	11,8669	12,1473	11,9472

APÊNDICE I – Apresentação das TAB. 32 e 33.

Tabela 32 -Valores das cinco mensurações para as associações S2+C3(a, b, c, d, e)

	valules uas	CITICO ITI C IT	suraçues p	Jaia as as	<u>sociações</u>	32 + C3(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S2 + C3a	L*	65,946	66,2131	66,539	66,3854	66,6387	66,34444
	a*	0,8732	0,8202	0,7521	0,7557	0,7055	0,78134
	b*	13,2307	12,6999	12,5995	12,5233	12,2397	12,65862
S2 + C3b	L*	65,898	65,5808	65,8488	65,854	66,1283	65,86198
	a*	1,0225	1,1763	1,0328	1,0318	0,9118	1,03504
	b*	13,9525	14,5799	14,0371	14,107	13,4468	14,02466
S2 + C3c	L*	66,7331	66,5552	66,6764	66,4693	66,3592	66,55864
	a*	0,6979	0,5791	0,6941	0,5673	0,5698	0,62164
	b*	12,6455	11,7469	12,3581	11,6175	11,7781	12,02922
S2 + C3d	L*	66,2171	66,3069	66,4197	66,2343	66,0176	66,23912
	a*	0,9787	0,9794	0,8603	0,9518	0,9351	0,94106
	b*	13,5066	13,6119	12,9508	13,2924	12,9109	13,25452
S2 + C3e	L*	65,0474	64,8197	64,593	64,6349	65,036	64,8262
	a*	1,0011	1,1699	1,1518	1,107	1,0027	1,0865
	b*	13,5266	14,5094	14,3106	14,011	13,6576	14,00304

Tabela 33 -Valores das cinco mensurações para as associações S2+C4(a, b, c, d, e)

Tabela 33	valores das t		Jaraçoco I	Jaia as as	ooolaçoes	$\frac{\partial Z}{\partial x}$	D, O, G, C)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S2 + C4a	L*	70,8113	70,8955	71,1009	70,8808	70,7607	70,88984
	a*	1,0093	1,0176	0,8645	1,0095	0,9991	0,98
	b*	15,4535	15,458	14,7839	15,4236	15,3934	15,30248
S2 + C4b	L*	69,3697	68,5475	68,9703	69,0206	69,0112	68,98386
	a*	0,6595	0,8902	0,7885	0,7574	0,7767	0,77446
	b*	13,4816	13,9898	13,8363	13,4986	13,793	13,71986
S2 + C4c	L*	66,7053	66,6033	66,4614	66,4433	66,4697	66,5366
	a*	1,6806	1,7397	1,7702	1,6559	1,7207	1,71342
	b*	14,7085	14,7409	14,7586	14,6155	14,8201	14,72872
S2 + C4d	L*	67,6363	67,4857	67,6736	67,7891	67,5448	67,6259
	a*	1,2841	1,3076	1,2855	1,3394	1,2706	1,29744
	b*	14,5361	14,5714	14,5181	14,5701	14,7402	14,58718
S2 + C4e	L*	67,3013	67,2702	67,6917	67,8719	67,6693	67,56088
	a*	0,8048	0,8015	0,784	0,6912	0,7734	0,77098
-	b*	13,4348	13,4005	13,5894	13,0787	13,3161	13,3639

APÊNDICE J – Apresentação das TAB. 34 e 35.

Tabela 34 -Valores das cinco mensurações para as associações S2+C5(a, b, c, d, e)

Tabela 34 -	valules uas	CITICO ITIETI	surações p	Jaia as as	<u>suciações</u>	32+05(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S2 + C5a	L*	66,2969	66,2462	65,9887	66,1855	66,3211	66,20768
	a*	1,7834	1,8239	1,9074	1,8471	1,6684	1,80604
	b*	15,0711	15,2534	15,3032	15,3299	15,0282	15,19716
S2 + C5b	L*	66,3721	66,2049	66,2519	66,2969	66,2742	66,28
	a*	2,0999	2,0805	2,1395	2,0262	1,9822	2,06566
	b*	15,9564	15,8226	15,9222	16,0867	15,8641	15,9304
S2 + C5c	L*	67,2946	67,0936	67,1999	67,5571	67,3735	67,30374
	a*	2,381	2,4629	2,4681	2,4152	2,4589	2,43722
	b*	16,4289	16,5373	16,5035	16,7631	16,5116	16,54888
S2 + C5d	L*	66,2408	66,1778	66,2268	66,6113	66,5566	66,36266
	a*	2,0456	2,071	2,0698	2,0796	2,1159	2,07638
	b*	15,5128	15,544	15,5337	15,8064	15,6719	15,61376
S2 + C5e	L*	65,1917	65,5867	65,7272	65,4761	65,3113	65,4586
	a*	2,4006	2,2683	2,3389	2,2641	2,3171	2,3178
	b*	15,8862	15,7239	16,0515	15,6303	15,7601	15,8104

Tabela 35 -Valores das cinco mensurações para as associações S2+C6(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S2 + C6a	L*	64,6641	64,6399	64,976	64,6817	64,6868	64,7297
	a*	2,8322	2,8593	2,7729	2,8688	2,8702	2,84068
	b*	14,2466	14,574	15,0492	14,4934	14,8484	14,64232
S2 + C6b	L*	65,2791	65,3534	65,2715	65,3093	65,3162	65,3059
	a*	2,6676	2,6507	2,7391	2,6345	2,6722	2,67282
	b*	14,7416	14,5496	14,9894	14,6266	14,72	14,72544
S2 + C6c	L*	64,3819	64,1124	64,0696	64,156	64,3621	64,2164
	a*	2,949	3,053	3,0191	3,0435	2,7447	2,96186
	b*	14,4653	15,0162	14,9352	14,9668	14,6348	14,80366
S2 + C6d	L*	63,8938	64,0178	63,9168	63,8807	63,8729	63,9164
	a*	3,0132	2,9505	2,977	3,0022	3,0094	2,99046
	b*	15,024	14,502	15,012	14,9059	15,0534	14,89946
S2 + C6e	L*	63,8274	63,5377	63,5242	63,6215	63,4953	63,60122
	a*	2,7492	2,8642	2,8808	2,8434	2,996	2,86672
	b*	14,6201	14,7058	14,631	14,5607	15,105	14,72452

APÊNDICE K – Apresentação das TAB. 37 e 38.

Tabela 37 -Valores das cinco mensurações para as associações S3+C1(a, b, c, d, e)

Tabela 37 -	valules uas	CITICO ITI C IT	suraçues p	Jaia as as	<u>suciações</u>	33+61(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S3 + C1a	L*	65,5047	66,0398	65,8405	65,8017	65,9162	65,82058
	a*	1,6466	1,8511	1,7257	1,7967	1,8307	1,77016
	b*	13,639	14,5529	14,0409	14,2019	14,3815	14,16324
S3 + C1b	L*	65,5378	65,5942	65,745	66,2332	66,1199	65,84602
	a*	1,7336	1,7076	1,7488	1,7016	1,736	1,72552
	b*	14,1817	14,2237	14,638	14,432	14,5999	14,41506
S3 + C1c	L*	65,3606	65,6013	65,4485	66,5423	66,0652	65,80358
	a*	1,627	1,4543	1,5677	1,6868	1,5705	1,58126
	b*	13,9242	13,4207	13,8363	14,6965	14,159	14,00734
S3 + C1d	L*	65,8986	66,0389	65,735	66,0963	65,7034	65,89444
	a*	1,4126	1,4149	1,4878	1,3782	1,4664	1,43198
	b*	13,9242	13,4207	13,8363	14,6965	14,159	14,00734
S3 + C1e	L*	67,8166	68,1405	67,6614	67,5741	67,4985	67,73822
	a*	1,7053	1,6534	1,6823	1,6684	1,6676	1,6754
	b*	15,4297	15,3285	15,2425	15,1126	15,0754	15,23774

Tabela 38 -Valores das cinco mensurações para as associações S3+C2(a, b, c, d, e)
Associações Coordenadas 1ª medida 2ª medida 3ª medida 4ª medida 5ª medida Média

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S3 + C2a	L*	65,9378	65,8044	66,1593	65,8618	66,3516	66,02298
	a*	1,1342	1,2347	1,0408	1,2119	1,1884	1,162
	b*	13,1879	13,7846	12,5029	13,8265	13,2629	13,31296
S3 + C2b	L*	65,8466	65,9663	65,9658	65,8175	66,0002	65,91928
	a*	1,3481	1,2571	1,2729	1,3373	1,2845	1,29998
	b*	13,7754	13,1941	13,3453	13,8891	13,5217	13,54512
S3 + C2c	L*	66,7713	66,3328	66,3514	66,1288	66,2267	66,3622
	a*	1,1816	1,1037	1,1001	1,137	1,1432	1,13312
	b*	13,4458	13,1579	13,1609	13,0275	13,061	13,17062
S3 + C2d	L*	67,7131	67,6814	67,3785	67,364	67,6902	67,56544
	a*	1,3456	1,3217	1,4165	1,4107	1,3225	1,3634
	b*	14,4269	14,3377	14,9471	14,6439	14,3131	14,53374
S3 + C2e	L*	67,9815	68,1804	67,4856	67,7255	67,8422	67,84304
	a*	1,2773	1,1974	1,2557	1,2149	1,1615	1,22136
	b*	13,5519	13,2896	13,1618	13,0243	12,6198	13,12948

APÊNDICE L – Apresentação das TAB. 38 e 40.

Tabela 39 -Valores das cinco mensurações para as associações S3+C3(a, b, c, d, e)

Tabela 39 -	valores das	CITICO ITIETI	Surações	vara as as	<u>suciações</u>	33+03(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S3 + C3a	L*	67,5415	67,3147	67,6458	67,4367	67,5974	67,50722
	a*	1,0909	1,1682	1,1024	1,1617	1,1012	1,12488
	b*	13,4749	13,8729	13,5517	13,6706	13,552	13,62442
S3 + C3b	L*	66,4632	66,4977	66,8486	66,8565	66,8777	66,70874
	a*	1,3969	1,4544	1,1532	1,1994	1,1934	1,27946
	b*	14,7922	14,9715	13,633	13,7637	13,8136	14,1948
S3 + C3c	L*	66,3937	66,646	66,9811	67,0017	66,8935	66,7832
	a*	0,851	0,928	0,9094	0,9173	0,8998	0,9011
	b*	12,3457	12,5476	12,2871	12,3268	12,3413	12,3697
63 / 634	L*	66 4522	6E 77E0	66 0240	66 2002	66.0650	66 00106
S3 + C3d		66,1532	65,7758	66,0318	66,3803	66,0652	66,08126
	a*	1,1286	1,2109	1,1788	1,1681	1,201	1,17748
	b*	12,9614	13,4921	13,197	13,7142	13,4194	13,35682
S3 + C3e	L*	65,2531	64,9947	65,1163	65,0165	64,9748	65,07108
	a*	1,4169	1,4905	1,4886	1,5086	1,5382	1,48856
	b*	14,5864	15,3236	15,0828	15,1962	15,3009	15,09798

Tabela 40 -Valores das cinco mensurações para as associações S3+C4(a, b, c, d, e)
Associações Coordenadas 1ª medida 2ª medida 3ª medida 4ª medida 5ª medida Média

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S3 + C4a	L*	71,0158	70,7234	71,1339	70,5358	71,0564	70,89306
	a*	1,1081	1,198	1,1359	0,9646	1,1215	1,10562
	b*	15,3639	15,4061	15,4047	14,6474	15,2808	15,22058
S3 + C4b	L*	70,1891	69,9448	70,0647	69,7015	69,5981	69,89964
	a*	0,5919	0,8326	0,7235	0,977	1,0696	0,83892
	b*	13,3682	13,8096	13,5841	14,0607	14,0321	13,77094
S3 + C4c	L*	66,7639	66,7426	67,4052	66,931	66,9698	66,9625
	a*	2,1469	2,1535	1,8225	2,0968	2,0599	2,05592
	b*	15,3405	15,3481	15,0124	15,306	15,3441	15,27022
S3 + C4d	L*	67,7216	67,7969	67,9717	68,2095	68,0001	67,93996
	a*	1,5129	1,4655	1,5612	1,6934	1,4968	1,54596
	b*	14,9264	14,6714	15,1221	15,522	14,9474	15,03786
S3 + C4e	L*	68,1358	68,4887	67,4732	68,0657	68,5839	68,14946
	a*	0,9713	0,8688	1,2097	1,0577	0,8691	0,99532
	b*	13,5832	13,4926	14,3387	13,7342	13,6792	13,76558

APÊNDICE M – Apresentação das TAB. 41 e 42.

Tabela 41 -Valores das cinco mensurações para as associações S3+C5(a, b, c, d, e)

Tabela 41 -	valuies uas		surações _l	Jaia as as	suciaçues	33 + C3(a,	D, C, U, C)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S3 + C5a	L*	66,5044	66,1893	66,3177	66,5196	66,5225	66,4107
	a*	2,1202	2,2993	2,2145	2,0329	2,1201	2,1574
	b*	15,6682	15,9637	15,7616	15,4919	15,5272	15,68252
S3 + C5b	L*	66,6122	66,7078	66,6879	66,4606	66,552	66,6041
	a*	2,3777	2,3836	2,361	2,406	2,2458	2,35482
	b*	16,4072	16,3804	16,4811	16,2707	16,4441	16,3967
S3 + C5c	L*	67,2574	67,3351	67,3139	67,4425	67,3554	67,34086
	a*	2,8936	2,9094	2,6666	2,325	2,3789	2,6347
	b*	17,1679	17,162	16,6283	15,9227	16,0348	16,58314
S3 + C5d	L*	66,5344	66,2144	66,4643	66,3593	66,2168	66,35784
	a*	2,2941	2,3283	2,2683	2,3981	2,3535	2,32846
	b*	15,7767	15,8298	15,747	15,9687	15,7995	15,82434
S3 + C5e	L*	65,2327	65,8114	65,4667	65,7395	65,9004	65,63014
	a*	2,4095	2,4002	2,3927	2,3944	2,3699	2,39334
	b*	15,6538	15,9843	15,7799	15,9059	15,9052	15,84582

Tabela 42 -Valores das cinco mensurações para as associações S3+C6(a, b, c, d, e)

							<u> </u>
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S3 + C6a	L*	64,5479	64,5563	64,7262	64,844	64,5974	64,65436
	a*	3,0876	3,0561	2,9765	2,9284	3,0356	3,01684
	b*	15,1294	15,0484	15,7185	14,2957	14,6733	14,97306
S3 + C6b	L*	65,4636	65,4938	65,519	65,5348	65,4701	65,49626
00 + C0b							
	a*	2,8091	2,8397	2,8919	2,8084	2,8799	2,8458
	b*	14,6731	14,6328	14,7788	14,6332	14,763	14,69618
S3 + C6c	L*	64,5476	64,4767	64,462	64,458	64,5631	64,50148
	a*	3,4163	3,4156	3,4345	3,4411	3,3956	3,42062
	b*	15,4998	15,4147	15,5704	15,653	15,5012	15,52782
S3 + C6d	L*	64,3875	64,3194	64,3793	64,3648	64,3828	64,36676
00 1 000	a*	3,0808	3,1318	3,1088	3,0972	3,0711	3,09794
		*	•	•	*		*
	b*	14,5251	14,671	14,8833	14,6908	14,7685	14,70774
S3 + C6e	L*	63,933	64,0278	64,1182	64,1225	64,1866	64,07762
	a*	3,1406	3,1705	3,0975	3,1296	3,0867	3,12498
	b*	15,0445	14,9765	14,9161	14,9218	15,0154	14,97486

APÊNDICE N – Apresentação das TAB. 44 e 45.

Tabela 44 -Valores das cinco mensurações para as associações S4+C1(a, b, c, d, e)

Tabela 44 -	valui es uas		surações _l	Jaia as as	suciaçues	34+01(a,	D, C, U, C)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S4 + C1a	L*	66,0774	66,1321	66,7939	66,4884	66,3484	66,36804
	a*	2,5277	2,5156	2,5043	2,6173	2,6171	2,5564
	b*	15,1536	15,1287	15,4267	15,583	15,3542	15,32924
S4 + C1b	L*	65,2231	65,1161	65,1569	65,1788	65,2693	65,18884
	a*	2,5754	2,611	2,5934	2,6043	2,5608	2,58898
	b*	14,9322	15,2601	15,1502	15,2319	14,8087	15,07662
S4 + C1c	L*	65,4646	65,413	65,403	65,6615	65,6659	65,5216
	a*	2,6025	2,5826	2,5866	2,5746	2,5773	2,58472
	b*	14,9895	14,9996	14,9256	15,0502	15,1126	15,0155
S4 + C1d	L*	67,1031	66,374	66,3165	66,211	66,214	66,44372
	a*	2,2915	2,3679	2,3897	2,3862	2,3929	2,36564
	b*	14,2489	14,2879	14,5305	14,4785	14,542	14,41756
S4 + C1e	L*	65,5518	65,6897	66,2177	65,9067	65,644	65,80198
	a*	2,57	2,5191	2,3656	2,4792	2,5448	2,49574
	b*	15,2312	14,8664	14,7925	14,6026	15,0422	14,90698

Tabela 45 -Valores das cinco mensurações para as associações S4+C2(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S4 + C2a	L*	66,154	65,8632	66,3051	66,3962	66,3298	66,20966
	a*	1,7505	1,7707	1,7287	1,7599	1,7152	1,745
	b*	13,4016	13,4788	13,3912	13,5098	13,3225	13,42078
S4 + C2b	L*	65,867	65,933	66,0666	66,2556	66,0527	66,03498
	a*	1,9618	1,9334	1,9037	1,8669	1,9068	1,91452
	b*	14,4975	14,0235	13,7948	13,6016	13,9593	13,97534
S4 + C2c	L*	66,1467	66,2075	65,7531	65,906	65,6979	65,94224
	a*	1,8105	1,7805	1,7698	1,7906	1,8319	1,79666
	b*	13,7519	13,5186	13,4949	13,492	13,5703	13,56554
S4 + C2d	L*	67,7139	67,5599	67,3873	67,5138	67,2141	67,4778
	a*	2,0028	1,9718	1,9876	1,9698	1,9307	1,97254
	b*	15,5213	15,6589	15,6515	15,64	15,607	15,61574
S4 + C2e	L*	67,5445	67,6574	66,8402	67,4418	67,7445	67,44568
	a*	1,5718	1,559	1,6971	1,6327	1,567	1,60552
	b*	12,5682	12,5863	13,1357	12,8498	12,6615	12,7603

APÊNDICE O – Apresentação das TAB. 46 e 47.

Tabela 46 -Valores das cinco mensurações para as associações S4+C3(a, b, c, d, e)

Tabela 40 -	valores das	cirico men	Surações	vaia as as	<u>suciações</u>	34+03(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S4 + C3a	L*	66,7198	66,8226	66,9241	67,1444	67,1236	66,9469
	a*	1,4537	1,3689	1,3561	1,1616	1,3185	1,33176
	b*	13,559	13,3232	13,1495	12,261	12,8668	13,0319
S4 + C3b	L*	66,3892	66,6442	66,7922	66,775	66,3649	66,5931
	a*	1,9975	1,8896	1,8502	1,8398	1,9098	1,89738
	b*	16,2486	15,6753	15,471	15,5746	15,6861	15,73112
S4 + C3c	L*	67,0058	67,0016	66,966	67,0326	66,846	66,9704
	a*	1,2863	1,2657	1,3092	1,2557	1,3419	1,29176
	b*	13,0774	12,6606	12,8268	12,8517	13,134	12,9101
S4 + C3d	L*	66,8264	66,5585	66,6655	66,7574	66,7443	66,71042
	a*	1,577	1,615	1,6354	1,6294	1,6125	1,61386
	b*	13,7907	14,0946	14,385	14,1861	14,234	14,13808
S4 + C3e	L*	65,1188	65,0075	64,884	65,0577	64,8938	64,99236
	a*	1,6846	1,7359	1,7378	1,7654	1,8573	1,7562
	b*	14,242	14,565	15,1099	14,6424	15,1741	14,74668

Tabela 47 -Valores das cinco mensurações para as associações S4+C4(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S4 + C4a	L*	70,3892	70,6699	70,9826	70,5087	71,017	70,71348
	a*	1,4054	1,3668	1,4085	1,3773	1,4331	1,39822
	b*	15,0778	15,2069	15,4849	15,0033	15,4888	15,25234
S4 + C4b	L*	70,3669	69,9204	70,341	70,2068	70,0818	70,18338
	a*	1,087	1,3297	1,1542	1,1843	1,2425	1,19954
	b*	13,6343	14,0863	13,6429	13,7688	13,8173	13,78992
S4 + C4c	L*	66,5101	66,7199	66,5341	66,765	66,7033	66,64648
	a*	2,6708	2,6072	2,6621	2,5843	2,5877	2,62242
	b*	15,3746	15,4917	15,4596	15,5575	15,5325	15,48318
S4 + C4d	L*	67,7779	67,6795	67,7084	67,7861	67,8124	67,75286
	a*	1,9123	1,9055	1,9198	1,9122	1,9115	1,91226
	b*	14,8751	14,8939	14,9211	14,9115	14,9514	14,9106
S4 + C4e	L*	67,8446	67,58	67,8306	67,8685	67,5055	67,72584
	a*	1,5701	1,6304	1,6074	1,6104	1,7083	1,62532
	b*	14,2382	14,2833	14,5816	14,6465	14,5732	14,46456

APÊNDICE P – Apresentação das TAB. 48 e 49.

Tabela 48 -Valores das cinco mensurações para as associações S4+C5(a, b, c, d, e)

rabela 48 -	vaiores das	<u>cinco men</u>	surações	para as as	sociações	54+C5(a,	b, c, a, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S4 + C5a	L*	66,2832	66,3235	66,3412	66,1179	66,2048	66,25412
	a*	2,4606	2,4959	2,4464	2,5904	2,4871	2,49608
	b*	15,8716	15,9931	15,8475	16,0916	15,9243	15,94562
S4 + C5b	L*	66,5906	66,6733	66,539	66,5474	66,5598	66,58202
	a*	2,5509	2,5775	2,5383	2,6309	2,4233	2,54418
	b*	16,471	16,4031	16,1855	16,3341	15,908	16,26034
S4 + C5c	L*	66,9593	66,8785	66,9422	66,8528	66,8414	66,89484
	a*	2,3293	2,3984	2,4171	2,409	2,333	2,37736
	b*	15,9074	16,0083	16,1359	16,0447	15,6412	15,9475
S4 + C5d	L*	66,0823	66,2619	66,1687	66,1364	66,5083	66,23152
	a*	2,7184	2,7161	2,769	2,7475	2,7056	2,73132
	b*	16,3079	16,2844	16,6325	16,594	16,3112	16,426
S4 + C5e	L*	65,1259	65,0812	65,213	65,2428	65,511	65,23478
	a*	2,7433	2,7512	2,7601	2,7513	2,7239	2,74596
	b*	16,0185	16,0108	16,0566	16,1041	16,0197	16,04194

Tabela 49 -Valores das cinco mensurações para as associações S4+C6(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S4 + C6a	L*	64,9933	64,6987	64,787	64,6658	64,8508	64,79912
	a*	2,979	3,0997	3,0652	3,1085	3,0502	3,06052
	b*	14,1752	15,0583	14,8149	15,2359	14,5579	14,76844
S4 + C6b	L*	65,564	65,5941	65,5909	65,6399	65,5817	65,59412
	a*	3,0444	3,0271	3,0235	3,002	3,0234	3,02408
	b*	15,0418	15,2564	15,1597	14,9546	15,5304	15,18858
S4 + C6c	L*	64,1836	64,2209	64,1354	64,2499	64,2967	64,2173
	a*	3,294	3,3133	3,2994	3,3084	3,2861	3,30024
	b*	15,2116	15,1647	15,1001	15,1974	15,1274	15,16024
S4 + C6d	L*	64,1783	64,5536	64,1238	64,121	64,268	64,24894
	a*	3,1629	3,0874	3,2217	3,2263	3,1892	3,1775
	b*	14,9332	14,2516	15,0338	15,0469	14,7274	14,79858
S4 + C6e	L*	63,6918	63,5774	63,8776	63,7131	63,7694	63,72586
	a*	3,1006	3,1703	3,0462	3,0838	3,0798	3,09614
	b*	14,7453	14,9848	14,7966	14,7031	14,7114	14,78824

APÊNDICE Q – Apresentação das TAB. 51 e 52.

Tabela 51 -Valores das cinco mensurações para as associações S5+C1(a, b, c, d, e)

Tabela 51 -	valuies uas	CITICO ITIETI	surações p	Jaia as as	<u>suciações</u>	33+61(a,	b, c, u, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S5 + C1a	L*	67,5902	67,5883	68,1832	67,6987	67,9055	67,79318
	a*	3,6516	3,6774	3,3426	3,5811	3,5362	3,55778
	b*	17,4744	17,4826	16,6072	17,0559	17,1167	17,14736
S5 + C1b	L*	67,4505	67,1921	67,1681	67,3409	67,2653	67,28338
	a*	3,3519	3,5569	3,5594	3,5142	3,5253	3,50154
	b*	17,1168	17,1659	17,0547	17,1483	17,5022	17,19758
S5 + C1c	L*	67,4236	67,5736	67,4403	67,4982	67,4678	67,4807
	a*	3,3971	3,2974	3,3711	3,3542	3,4102	3,366
	b*	16,6928	16,4441	16,6937	16,613	16,7056	16,62984
S5 + C1d	L*	67,6505	68,3781	67,6216	68,6551	67,7586	68,01278
	a*	3,2525	3,1723	3,2593	3,1356	3,2524	3,21442
	b*	16,5336	16,1396	16,5295	16,0681	16,4908	16,35232
S5 + C1e	L*	67,962	67,8245	67,6033	68,0298	67,712	67,82632
	a*	3,3345	3,3825	3,5634	3,3526	3,5258	3,43176
	b*	16,8008	16,6587	17,2886	16,8254	17,2024	16,95518

Tabela 52 -Valores das cinco mensurações para as associações S5+C2(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S5 + C2a	L*	67,3387	67,9073	67,1682	67,7841	67,4859	67,53684
	a*	2,6238	2,5344	2,3193	2,4902	2,5453	2,5026
	b*	15,4335	15,0485	14,6259	14,8139	14,7251	14,92938
S5 + C2b	L*	67,0679	67,031	67,2866	67,0065	67,168	67,112
	a*	2,6934	2,7119	2,5553	2,7228	2,6255	2,66178
	b*	15,9364	16,1563	15,0455	16,2612	16,1275	15,90538
S5 + C2c	L*	67,8984	67,9642	67,291	67,6161	67,6791	67,68976
	a*	2,5161	2,5259	2,5414	2,5294	2,5342	2,5294
	b*	15,2975	15,3247	15,1289	15,3337	15,2943	15,27582
S5 + C2d	L*	68,3814	68,5166	68,1619	68,7868	68,7322	68,51578
	a*	2,7594	2,6897	2,8348	2,6966	2,5758	2,71126
	b*	16,9227	16,939	17,6698	16,8589	15,8402	16,84612
S5 + C2e	L*	68,3742	68,4216	68,4727	68,6121	68,9562	68,56736
	a*	2,1761	2,395	2,1543	2,3388	2,214	2,25564
	b*	13,6198	14,4474	13,4062	14,3594	13,9355	13,95366

APÊNDICE R – Apresentação das TAB. 53 e 54.

Tabela 53 -Valores das cinco mensurações para as associações S5+C3(a, b, c, d, e)

rabela 53 -	vaiores das	<u>cinco men</u>	surações p	<u>para as as</u>	sociações	55+C3(a,	b, c, a, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S5 + C3a	L*	67,2467	67,3106	67,3634	67,1854	67,605	67,34222
	a*	2,1075	2,0686	2,0695	2,1467	2,0108	2,08062
	b*	14,9353	15,0916	15,0142	14,9123	14,5996	14,9106
S5 + C3b	L*	66,7739	67,1911	66,901	67,4812	66,8835	67,04614
	a*	2,5841	2,4223	2,5595	2,3147	2,5436	2,48484
	b*	16,7709	16,0446	16,6027	15,6028	16,7193	16,34806
S5 + C3c	L*	67,8859	67,8424	67,5372	67,6895	67,7679	67,74458
	a*	1,834	1,9061	1,9012	1,9284	1,9497	1,90388
	b*	13,7309	14,6268	14,8137	14,6859	14,7487	14,5212
S5 + C3d	L*	67,0677	67,4542	67,4676	67,4066	67,4252	67,36426
	a*	2,247	2,1764	2,1213	2,2141	2,1992	2,1916
	b*	15,3453	14,938	14,8064	14,9841	15,069	15,02856
S5 + C3e	L*	65,8469	65,778	65,8545	65,7959	66,1084	65,87674
	a*	2,4499	2,4579	2,4406	2,4406	2,3971	2,43722
	b*	16,0797	16,2567	16,0182	16,0868	15,9508	16,07844

Tabela 54 -Valores das cinco mensurações para as associações S5+C4(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S5 + C4a	L*	71,0586	70,7411	70,9779	70,8957	70,8157	70,8978
	a*	2,0426	2,0777	2,0739	2,0702	2,0814	2,06916
	b*	15,4864	15,5509	15,6188	15,6117	15,7408	15,60172
S5 + C4b	L*	70,2966	70,2007	70,1652	70,5247	70,0782	70,25308
	a*	2,2577	2,1819	2,1811	2,241	2,2974	2,23182
	b*	15,4312	15,1836	15,1751	15,3905	15,5024	15,33656
S5 + C4c	L*	67,9658	68,275	68,2543	68,2509	68,3282	68,21484
	a*	3,3999	3,3367	3,3551	3,3643	3,3215	3,3555
	b*	16,8921	16,8433	16,8111	16,8392	16,7724	16,83162
S5 + C4d	L*	68,4563	68,6861	68,7421	68,478	68,6514	68,60278
	a*	2,6931	2,7187	2,7446	2,6277	2,7306	2,70294
	b*	16,1444	16,1961	16,0539	15,9859	16,1473	16,10552
S5 + C4e	L*	68,7029	68,8242	68,6576	68,905	68,7902	68,77598
	a*	2,3816	2,3593	2,4575	2,3992	2,3895	2,39742
	b*	15,2646	15,2199	15,9442	15,822	15,7851	15,60716

APÊNDICE S – Apresentação das TAB. 55 e 56.

Tabela 55 - Valores das cinco mensurações para as associações S5+C5(a, b, c, d, e)

rabela 55 -	vaiores das	<u>cinco men</u>	surações p	bara as as	sociações	55+C5(a,	b, c, a, e)
Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S5 + C5a	L*	66,7504	66,5573	67,5019	67,2549	67,4518	67,10326
	a*	3,0447	3,1596	2,8057	2,7717	2,8386	2,92406
	b*	16,5324	16,6739	16,3613	16,488	16,3585	16,48282
S5 + C5b	L*	67,1568	67,3371	67,5061	67,4083	67,3423	67,35012
	a*	3,2053	3,1587	3,0918	3,1489	3,162	3,15334
	b*	17,1045	17,1955	17,2798	17,2062	17,1692	17,19104
S5 + C5c	L*	66,8502	67,2707	67,2379	67,3416	67,2237	67,18482
	a*	3,1773	3,0355	2,9658	3,0702	3,0947	3,0687
	b*	16,7519	16,5018	16,4277	16,5446	16,557	16,5566
S5 + C5d	L*	67,5422	67,2187	66,8292	66,8177	67,0303	67,08762
	a*	3,1752	3,2034	3,3616	3,3574	3,2881	3,27714
	b*	16,7525	16,7779	17,1155	17,14	16,879	16,93298
S5 + C5e	L*	65,1943	65,2653	65,3123	65,1764	65,3884	65,26734
	a*	3,2305	3,2664	3,2071	3,265	3,2417	3,24214
	b*	16,5302	16,7929	16,5904	16,6237	16,8928	16,686

Tabela 56 -Valores das cinco mensurações para as associações S5+C6(a, b, c, d, e)

Associações	Coordenadas	1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	Média
S5 + C6a	L*	65,0219	64,9658	64,9998	64,8454	64,9293	64,95244
	a*	3,5858	3,5597	3,6104	3,6306	3,6058	3,59846
	b*	14,959	15,8872	14,9825	15,7052	15,7541	15,4576
S5 + C6b	L*	65,8141	65,7641	65,8003	65,7697	65,7968	65,789
00 + C0b							
	a*	3,5403	3,5691	3,5885	3,5921	3,5593	3,56986
	b*	15,6931	15,8141	15,8859	15,8244	15,9671	15,83692
S5 + C6c	L*	64,4237	64,6969	64,7076	64,653	64,693	64,63484
	a*	3,7092	3,8749	3,8563	3,8647	3,8842	3,83786
	b*	15,6944	15,8942	15,8732	15,8885	15,8564	15,84134
S5 + C6d	L*	64,0551	64,2047	64,19	63,866	64,109	64,08496
00 . 000	a*	3,4964	3,4477	3,3998	3,5689	3,5276	3,48808
	b*	15,1492	15,1476	15,4536	15,3428	15,4037	15,29938
	D	13,1432	13,1470	13,4330	13,3420	13,4037	13,29930
S5 + C6e	L*	64,4984	64,8174	64,6273	64,6684	64,6001	64,64232
	a*	3,7171	3,5249	3,5335	3,535	3,6501	3,59212
	b*	15,5177	14,5613	15,3765	15,341	15,4014	15,23958

APÊNDICE T - Apresentação da TAB. 58.

Tabela 58 - Cálculo dos valores de ? E, ?L*, ?a*, ?b* para a cerâmica IPS-Empress (c										(continua)
	L* (1)	a* (1)	b* (1)	L* (2)	a* (2)	b* (2)	?E	?L*	?a*	?b*
C1 + S1/C1a	60,65784	0,549836	12,19708	64,17078	1,7398	13,35702	3,886153	-3,51294	-1,18996	-1,15994
C1 + S1/C1b	60,65784	0,549836	12,19708	63,98638	1,77466	13,6953	3,850194	-3,32854	-1,22482	-1,49822
C1 + S1/C1c	60,65784	0,549836	12,19708	64,10332	1,70342	13,21662	3,773793	-3,44548	-1,15358	-1,01954
C1 + S1/C1d	60,65784	0,549836	12,19708	64,83434	1,53072	12,64688	4,313649	-4,1765	-0,98088	-0,4498
C1 + S1/C1e	60,65784	0,549836	12,19708	64,45056	1,6731	13,4117	4,137839	-3,79272	-1,12326	-1,21462
C1 + S1/C2a	60,65784	0,549836	12,19708	65,6308	1,20794	12,57726	5,030698	-4,97296	-0,6581	-0,38018
C1 + S1/C2b	60,65784	0,549836	12,19708	65,0856	1,4209	13,45724	4,685271	-4,42776	-0,87106	-1,26016
C1 + S1/C2c	60,65784	0,549836	12,19708	65,89846	1,24288	12,90284	5,333147	-5,24062	-0,69304	-0,70576
C1 + S1/C2d	60,65784	0,549836	12,19708	66,99556	1,46002	14,55724	6,823886	-6,33772	-0,91018	-2,36016
C1 + S1/C2e	60,65784	0,549836	12,19708	66,39948	1,03574	11,45762	5,809414	-5,74164	-0,4859	0,739464
C1 + S1/C3a	60,65784	0,549836	12,19708	66,34094	1,03256	12,83044	5,738619	-5,6831	-0,48272	-0,63336
C1 + S1/C3b	60,65784	0,549836	12,19708	65,81916	1,36264	14,2981	5,631527	-5,16132	-0,8128	-2,10102
C1 + S1/C3c	60,65784	0,549836	12,19708	66,53258	0,90654	12,06752	5,886981	-5,87474	-0,3567	0,129564
C1 + S1/C3d	60,65784	0,549836	12,19708	65,90328	1,19294	13,05054	5,353183	-5,24544	-0,6431	-0,85346
C1 + S1/C3e	60,65784	0,549836	12,19708	64,82466	1,40032	14,2058	4,703256	-4,16682	-0,85048	-2,00872
C1 + S2/C1a	60,65784	0,549836	12,19708	64,60888	1,36804	13,24368	4,168394	-3,95104	-0,8182	-1,0466
C1 + S2/C1b	60,65784	0,549836	12,19708	64,39098	1,28922	13,14778	3,922603	-3,73314	-0,73938	-0,9507
C1 + S2/C1c	60,65784	0,549836	12,19708	64,66238	1,23296	13,13514	4,169282	-4,00454	-0,68312	-0,93806
C1 + S2/C1d	60,65784	0,549836	12,19708	65,1013	1,14938	12,52924	4,496007	-4,44346	-0,59954	-0,33216
C1 + S2/C1e	60,65784	0,549836	12,19708	64,87238	1,2962	13,34052	4,430217	-4,21454	-0,74636	-1,14344
C1 + S2/C2a	60,65784	0,549836	12,19708	65,94292	1,01424	12,67162	5,32662	-5,28508	-0,4644	-0,47454
C1 + S2/C2b	60,65784	0,549836	12,19708	65,46454	0,96008	12,70358	4,850687	-4,8067	-0,41024	-0,5065
C1 + S2/C2c	60,65784	0,549836	12,19708	65,6309	0,94534	12,67912	5,011992	-4,97306	-0,3955	-0,48204
C1 + S2/C2d	60,65784	0,549836	12,19708	67,02352	1,07966	14,07896	6,659129	-6,36568	-0,52982	-1,88188
C1 + S2/C2e	60,65784	0,549836	12,19708	65,90036	0,75554	11,9472	5,252498	-5,24252	-0,2057	0,249884
C1 + S2/C3a	60,65784	0,549836	12,19708	66,34444	0,78134	12,65862	5,70999	-5,6866	-0,2315	-0,46154
C1 + S2/C3b	60,65784	0,549836	12,19708	65,86198	1,03504	14,02466	5,537011	-5,20414	-0,4852	-1,82758
C1 + S2/C3c	60,65784	0,549836	12,19708	66,55864	0,62164	12,02922	5,90362	-5,9008	-0,0718	0,167864
C1 + S2/C3d	60,65784	0,549836	12,19708	66,23912	0,94106	13,25452	5,69402	-5,58128	-0,39122	-1,05744
C1 + S2/C3e	60,65784	0,549836	12,19708	64,8262	1,0865	14,00304	4,57435	-4,16836	-0,53666	-1,80596

Tabela 58 - Cálculo dos valores de ? E, ?L*, ?a*, ?b* para a cerâmica IPS-Empress										ntinuação)
	L* (1)	a* (1)	b* (1)	L* (2)	a* (2)	b* (2)	?E	?L*	?a*	?b*
C1 + S3/C1a	60,65784	0,549836	12,19708	65,82058	1,77016	14,16324	5,657632	-5,16274	-1,22032	-1,96616
C1 + S3/C1b	60,65784	0,549836	12,19708	65,84602	1,72552	14,41506	5,763577	-5,18818	-1,17568	-2,21798
C1 + S3/C1c	60,65784	0,549836	12,19708	65,80358	1,58126	14,00734	5,551528	-5,14574	-1,03142	-1,81026
C1 + S3/C1d	60,65784	0,549836	12,19708	65,89444	1,43198	13,25814	5,415344	-5,2366	-0,88214	-1,06106
C1 + S3/C1e	60,65784	0,549836	12,19708	67,73822	1,6754	15,21456	7,778418	-7,08038	-1,12556	-3,01748
C1 + S3/C2a	60,65784	0,549836	12,19708	66,02298	1,162	13,31296	5,514037	-5,36514	-0,61216	-1,11588
C1 + S3/C2b	60,65784	0,549836	12,19708	65,91928	1,29998	13,54512	5,48294	-5,26144	-0,75014	-1,34804
C1 + S3/C2c	60,65784	0,549836	12,19708	66,3622	1,13312	13,17062	5,816156	-5,70436	-0,58328	-0,97354
C1 + S3/C2d	60,65784	0,549836	12,19708	67,56544	1,3634	14,53374	7,337352	-6,9076	-0,81356	-2,33666
C1 + S3/C2e	60,65784	0,549836	12,19708	67,84304	1,22136	13,12948	7,276493	-7,1852	-0,67152	-0,9324
C1 + S3/C3a	60,65784	0,549836	12,19708	67,50722	1,12488	13,62442	7,020108	-6,84938	-0,57504	-1,42734
C1 + S3/C3b	60,65784	0,549836	12,19708	66,70874	1,27946	14,1948	6,413779	-6,0509	-0,72962	-1,99772
C1 + S3/C3c	60,65784	0,549836	12,19708	66,7832	0,9011	12,3697	6,137847	-6,12536	-0,35126	-0,17262
C1 + S3/C3d	60,65784	0,549836	12,19708	66,08126	1,17748	13,35682	5,58143	-5,42342	-0,62764	-1,15974
C1 + S3/C3e	60,65784	0,549836	12,19708	65,07108	1,48856	15,09798	5,364052	-4,41324	-0,93872	-2,9009
C1 + S4/C1a	60,65784	0,549836	12,19708	66,36804	2,5564	15,32924	6,814913	-5,7102	-2,00656	-3,13216
C1 + S4/C1b	60,65784	0,549836	12,19708	65,18884	2,58898	15,07662	5,742801	-4,531	-2,03914	-2,87954
C1 + S4/C1c	60,65784	0,549836	12,19708	65,5216	2,58472	15,0155	5,978323	-4,86376	-2,03488	-2,81842
C1 + S4/C1d	60,65784	0,549836	12,19708	66,44372	2,36564	14,41756	6,457865	-5,78588	-1,8158	-2,22048
C1 + S4/C1e	60,65784	0,549836	12,19708	65,80198	2,49574	14,90698	6,131249	-5,14414	-1,9459	-2,7099
C1 + S4/C2a	60,65784	0,549836	12,19708	66,20966	1,745	13,42078	5,809347	-5,55182	-1,19516	-1,2237
C1 + S4/C2b	60,65784	0,549836	12,19708	66,03498	1,91452	13,97534	5,825646	-5,37714	-1,36468	-1,77826
C1 + S4/C2c	60,65784	0,549836	12,19708	65,94224	1,79666	13,56554	5,599293	-5,2844	-1,24682	-1,36846
C1 + S4/C2d	60,65784	0,549836	12,19708	67,4778	1,97254	15,61574	7,760354	-6,81996	-1,4227	-3,41866
C1 + S4/C2e	60,65784	0,549836	12,19708	67,44568	1,60552	12,7603	6,892489	-6,78784	-1,05568	-0,56322
C1 + S4/C3a	60,65784	0,549836	12,19708	66,9469	1,33176	13,0319	6,392226	-6,28906	-0,78192	-0,83482
C1 + S4/C3b	60,65784	0,549836	12,19708	66,5931	1,89738	15,73112	7,037936	-5,93526	-1,34754	-3,53404
C1 + S4/C3c	60,65784	0,549836	12,19708	66,9704	1,29176	12,9101	6,395874	-6,31256	-0,74192	-0,71302
C1 + S4/C3d	60,65784	0,549836	12,19708	66,71042	1,61386	14,13808	6,444633	-6,05258	-1,06402	-1,941
C1 + S4/C3e	60,65784	0,549836	12,19708	64,99236	1,7562	14,74668	5,171439	-4,33452	-1,20636	-2,5496

									(conclusão)	
	L* (1)	a* (2)	b* (2)	L* (2)	a* (2)	b* (2)	?E	?L*	?a*	?b*
C1 + S5/C1a	60,65784	0,549836	12,19708	67,79318	3,55778	17,14736	9,190537	-7,13534	-3,00794	-4,95028
C1 + S5/C1b	60,65784	0,549836	12,19708	67,28338	3,50154	17,19758	8,809951	-6,62554	-2,9517	-5,0005
C1 + S5/C1c	60,65784	0,549836	12,19708	67,4807	3,366	16,62984	8,609963	-6,82286	-2,81616	-4,43276
C1 + S5/C1d	60,65784	0,549836	12,19708	68,01278	3,21442	16,35232	8,857826	-7,35494	-2,66458	-4,15524
C1 + S5/C1e	60,65784	0,549836	12,19708	67,82632	3,43176	16,95518	9,073699	-7,16848	-2,88192	-4,7581
C1 + S5/C2a	60,65784	0,549836	12,19708	67,53684	2,5026	14,92938	7,655019	-6,879	-1,95276	-2,7323
C1 + S5/C2b	60,65784	0,549836	12,19708	67,112	2,66178	15,90538	7,737435	-6,45416	-2,11194	-3,7083
C1 + S5/C2c	60,65784	0,549836	12,19708	67,68976	2,5294	15,27582	7,927492	-7,03192	-1,97956	-3,07874
C1 + S5/C2d	60,65784	0,549836	12,19708	68,51578	2,71126	16,84612	9,382561	-7,85794	-2,16142	-4,64904
C1 + S5/C2e	60,65784	0,549836	12,19708	68,56736	2,25564	13,95366	8,279841	-7,90952	-1,7058	-1,75658
C1 + S5/C3a	60,65784	0,549836	12,19708	67,34222	2,08062	14,9106	7,374778	-6,68438	-1,53078	-2,71352
C1 + S5/C3b	60,65784	0,549836	12,19708	67,04614	2,48484	16,34806	7,860354	-6,3883	-1,935	-4,15098
C1 + S5/C3c	60,65784	0,549836	12,19708	67,74458	1,90388	14,5212	7,580025	-7,08674	-1,35404	-2,32412
C1 + S5/C3d	60,65784	0,549836	12,19708	67,36426	2,1916	15,02856	7,462484	-6,70642	-1,64176	-2,83148
C1 + S5/C3e	60,65784	0,549836	12,19708	65,87674	2,43722	16,07844	6,772298	-5,2189	-1,88738	-3,88136

APÊNDICE U - Apresentação da tabela 63.

Tabela 63 - Cálculo dos valores de ? E, ?L*, ?a*, ?b* para a cerâmica IPS-Empress2 + Eris (cor										(continua)
	L* (1)	a* (1)	b* (1)	L* (2)	a* (2)	b* (2)	?E	?L*	?a*	?b*
C4 + S1/C4a	65,14108	0,789036	13,41517	69,51576	0,58652	13,7024	4,388774	-4,37468	0,202516	-0,28723
C4 + S1/C4b	65,14108	0,789036	13,41517	68,78216	0,83768	13,33556	3,642275	-3,64108	-0,04864	0,079608
C4 + S1/C4c	65,14108	0,789036	13,41517	66,12122	1,91292	14,52676	1,859953	-0,98014	-1,12388	-1,11159
C4 + S1/C4d	65,14108	0,789036	13,41517	67,27136	1,24542	13,96682	2,247376	-2,13028	-0,45638	-0,55165
C4 + S1/C4e	65,14108	0,789036	13,41517	67,6426	0,7584	12,9332	2,547712	-2,50152	0,030636	0,481968
C4 + S1/C5a	65,14108	0,789036	13,41517	66,02186	1,91212	15,1166	2,220802	-0,88078	-1,12308	-1,70143
C4 + S1/C5b	65,14108	0,789036	13,41517	66,53872	2,13736	15,90538	3,157931	-1,39764	-1,34832	-2,49021
C4 + S1/C5c	65,14108	0,789036	13,41517	66,51538	2,04526	15,36996	2,699632	-1,3743	-1,25622	-1,95479
C4 + S1/C5d	65,14108	0,789036	13,41517	66,20216	2,01266	15,29266	2,479541	-1,06108	-1,22362	-1,87749
C4 + S1/C5e	65,14108	0,789036	13,41517	65,16128	2,13036	15,21536	2,24505	-0,0202	-1,34132	-1,80019
C4 + S1/C6a	65,14108	0,789036	13,41517	64,72114	2,87422	14,59566	2,432674	0,41994	-2,08518	-1,18049
C4 + S1/C6b	65,14108	0,789036	13,41517	65,50654	2,78376	14,67608	2,387966	-0,36546	-1,99472	-1,26091
C4 + S1/C6c	65,14108	0,789036	13,41517	64,15038	3,08714	14,9495	2,935463	0,9907	-2,2981	-1,53433
C4 + S1/C6d	65,14108	0,789036	13,41517	64,42094	2,9852	14,51304	2,558723	0,72014	-2,19616	-1,09787
C4 + S1/C6e	65,14108	0,789036	13,41517	63,84426	2,91564	14,59368	2,755554	1,29682	-2,1266	-1,17851
C4 + S2/C4a	65,14108	0,789036	13,41517	70,88984	0,98	15,30248	6,053648	-5,74876	-0,19096	-1,88731
C4 + S2/C4b	65,14108	0,789036	13,41517	68,98386	0,77446	13,71986	3,854868	-3,84278	0,014576	-0,30469
C4 + S2/C4c	65,14108	0,789036	13,41517	66,5366	1,71342	14,72872	2,127764	-1,39552	-0,92438	-1,31355
C4 + S2/C4d	65,14108	0,789036	13,41517	67,6259	1,29744	14,58718	2,793997	-2,48482	-0,5084	-1,17201
C4 + S2/C4e	65,14108	0,789036	13,41517	67,56088	0,77098	13,3639	2,42041	-2,4198	0,018056	0,051268
C4 + S2/C5a	65,14108	0,789036	13,41517	66,20768	1,80604	15,19716	2,312451	-1,0666	-1,017	-1,78199
C4 + S2/C5b	65,14108	0,789036	13,41517	66,28	2,06566	15,9304	3,041924	-1,13892	-1,27662	-2,51523
C4 + S2/C5c	65,14108	0,789036	13,41517	67,30374	2,43722	16,54888	4,148947	-2,16266	-1,64818	-3,13371
C4 + S2/C5d	65,14108	0,789036	13,41517	66,36266	2,07638	15,61376	2,825477	-1,22158	-1,28734	-2,19859
C4 + S2/C5e	65,14108	0,789036	13,41517	65,4586	2,3178	15,8104	2,859209	-0,31752	-1,52876	-2,39523
C4 + S2/C6a	65,14108	0,789036	13,41517	64,7297	2,84068	14,64232	2,425774	0,41138	-2,05164	-1,22715
C4 + S2/C6b	65,14108	0,789036	13,41517	65,3059	2,67282	14,72544	2,30057	-0,16482	-1,88378	-1,31027
C4 + S2/C6c	65,14108	0,789036	13,41517	64,2164	2,96186	14,80366	2,739363	0,92468	-2,17282	-1,38849
C4 + S2/C6d	65,14108	0,789036	13,41517	63,9164	2,99046	14,89946	2,923907	1,22468	-2,20142	-1,48429
C4 + S2/C6e	65,14108	0,789036	13,41517	63,60122	2,86672	14,72452	2,898679	1,53986	-2,07768	-1,30935

Tabela 63 - Cálculo dos valores de ? E, ?L*, ?a*, ?b* para a cerâmica IPS-Empress2 + Eris										ontinuação)
	L* (1)	a* (1)	b* (1)	L* (2)	a* (2)	b* (2)	?E	?L*	?a*	?b*
C4 + S3/C4a	65,14108	0,789036	13,41517	70,89306	1,10562	15,22058	6,03697	-5,75198	-0,31658	-1,80541
C4 + S3/C4b	65,14108	0,789036	13,41517	69,89964	0,83892	13,77094	4,772102	-4,75856	-0,04988	-0,35577
C4 + S3/C4c	65,14108	0,789036	13,41517	66,9625	2,05592	15,27022	2,892021	-1,82142	-1,26688	-1,85505
C4 + S3/C4d	65,14108	0,789036	13,41517	67,93996	1,54596	15,03786	3,322618	-2,79888	-0,75692	-1,62269
C4 + S3/C4e	65,14108	0,789036	13,41517	68,14946	0,99532	13,76558	3,035736	-3,00838	-0,20628	-0,35041
C4 + S3/C5a	65,14108	0,789036	13,41517	66,4107	2,1574	15,68252	2,936876	-1,26962	-1,36836	-2,26735
C4 + S3/C5b	65,14108	0,789036	13,41517	66,6041	2,35482	16,3967	3,671735	-1,46302	-1,56578	-2,98153
C4 + S3/C5c	65,14108	0,789036	13,41517	67,34086	2,6347	16,58314	4,275693	-2,19978	-1,84566	-3,16797
C4 + S3/C5d	65,14108	0,789036	13,41517	66,35784	2,32846	15,82434	3,10716	-1,21676	-1,53942	-2,40917
C4 + S3/C5e	65,14108	0,789036	13,41517	65,63014	2,39334	15,84582	2,953141	-0,48906	-1,6043	-2,43065
C4 + S3/C6a	65,14108	0,789036	13,41517	64,65436	3,01684	14,97306	2,761709	0,48672	-2,2278	-1,55789
C4 + S3/C6b	65,14108	0,789036	13,41517	65,49626	2,8458	14,69618	2,448964	-0,35518	-2,05676	-1,28101
C4 + S3/C6c	65,14108	0,789036	13,41517	64,50148	3,42062	15,52782	3,434767	0,6396	-2,63158	-2,11265
C4 + S3/C6d	65,14108	0,789036	13,41517	64,36676	3,09794	14,70774	2,757055	0,77432	-2,3089	-1,29257
C4 + S3/C6e	65,14108	0,789036	13,41517	64,07762	3,12498	14,97486	3,003368	1,06346	-2,33594	-1,55969
C4 + S4/C4a	65,14108	0,789036	13,41517	70,71348	1,39822	15,25234	5,898979	-5,5724	-0,60918	-1,83717
C4 + S4/C4b	65,14108	0,789036	13,41517	70,18338	1,19954	13,78992	5,072844	-5,0423	-0,4105	-0,37475
C4 + S4/C4c	65,14108	0,789036	13,41517	66,64648	2,62242	15,48318	3,147094	-1,5054	-1,83338	-2,06801
C4 + S4/C4d	65,14108	0,789036	13,41517	67,75286	1,91226	14,9106	3,212374	-2,61178	-1,12322	-1,49543
C4 + S4/C4e	65,14108	0,789036	13,41517	67,72584	1,62532	14,46456	2,912315	-2,58476	-0,83628	-1,04939
C4 + S4/C5a	65,14108	0,789036	13,41517	66,25412	2,49608	15,94562	3,249007	-1,11304	-1,70704	-2,53045
C4 + S4/C5b	65,14108	0,789036	13,41517	66,58202	2,54418	16,26034	3,640308	-1,44094	-1,75514	-2,84517
C4 + S4/C5c	65,14108	0,789036	13,41517	66,89484	2,37736	15,9475	3,465711	-1,75376	-1,58832	-2,53233
C4 + S4/C5d	65,14108	0,789036	13,41517	66,23152	2,73132	16,426	3,745215	-1,09044	-1,94228	-3,01083
C4 + S4/C5e	65,14108	0,789036	13,41517	65,23478	2,74596	16,04194	3,276929	-0,0937	-1,95692	-2,62677
C4 + S4/C6a	65,14108	0,789036	13,41517	64,79912	3,06052	14,76844	2,666069	0,34196	-2,27148	-1,35327
C4 + S4/C6b	65,14108	0,789036	13,41517	65,59412	3,02408	15,18858	2,888885	-0,45304	-2,23504	-1,77341
C4 + S4/C6c	65,14108	0,789036	13,41517	64,2173	3,30024	15,16024	3,194494	0,92378	-2,5112	-1,74507
C4 + S4/C6d	65,14108	0,789036	13,41517	64,24894	3,1775	14,79858	2,900776	0,89214	-2,38846	-1,38341
C4 + S4/C6e	65,14108	0,789036	13,41517	63,72586	3,09614	14,78824	3,034947	1,41522	-2,3071	-1,37307

Tabela 63 - Cálculo dos valores de ? E, ?L*, ?a*, ?b* para a cerâmica IPS-Empress2 + Eris (c										
	L* (1)	a* (1)	b* (1)	L* (2)	a* (2)	b* (2)	?E	?L*	?a*	?b*
C4 + S5/C4a	65,14108	0,789036	13,41517	70,8978	2,06916	15,60172	6,289638	-5,75672	-1,28012	-2,18655
C4 + S5/C4b	65,14108	0,789036	13,41517	70,25308	2,23182	15,33656	5,648532	-5,112	-1,44278	-1,92139
C4 + S5/C4c	65,14108	0,789036	13,41517	68,21484	3,3555	16,83162	5,263733	-3,07376	-2,56646	-3,41645
C4 + S5/C4d	65,14108	0,789036	13,41517	68,60278	2,70294	16,10552	4,783763	-3,4617	-1,9139	-2,69035
C4 + S5/C4e	65,14108	0,789036	13,41517	68,77598	2,39742	15,60716	4,539188	-3,6349	-1,60838	-2,19199
C4 + S5/C5a	65,14108	0,789036	13,41517	67,10326	2,92406	16,48282	4,221252	-1,96218	-2,13502	-3,06765
C4 + S5/C5b	65,14108	0,789036	13,41517	67,35012	3,15334	17,19104	4,972625	-2,20904	-2,3643	-3,77587
C4 + S5/C5c	65,14108	0,789036	13,41517	67,18482	3,0687	16,5566	4,386609	-2,04374	-2,27966	-3,14143
C4 + S5/C5d	65,14108	0,789036	13,41517	67,08762	3,27714	16,93298	4,728074	-1,94654	-2,4881	-3,51781
C4 + S5/C5e	65,14108	0,789036	13,41517	65,26734	3,24214	16,686	4,090477	-0,12626	-2,4531	-3,27083
C4 + S5/C6a	65,14108	0,789036	13,41517	64,95244	3,59846	15,4576	3,478502	0,18864	-2,80942	-2,04243
C4 + S5/C6b	65,14108	0,789036	13,41517	65,789	3,56986	15,83692	3,744017	-0,64792	-2,78082	-2,42175
C4 + S5/C6c	65,14108	0,789036	13,41517	64,63484	3,83786	15,84134	3,929112	0,50624	-3,04882	-2,42617
C4 + S5/C6d	65,14108	0,789036	13,41517	64,08496	3,48808	15,29938	3,456947	1,05612	-2,69904	-1,88421
C4 + S5/C6e	65,14108	0,789036	13,41517	64,64232	3,59212	15,23958	3,381497	0,49876	-2,80308	-1,82441

Livros Grátis

(http://www.livrosgratis.com.br)

Milhares de Livros para Download:

<u>Baixar</u>	livros	de A	\dm	<u>inis</u>	<u>tração</u>

Baixar livros de Agronomia

Baixar livros de Arquitetura

Baixar livros de Artes

Baixar livros de Astronomia

Baixar livros de Biologia Geral

Baixar livros de Ciência da Computação

Baixar livros de Ciência da Informação

Baixar livros de Ciência Política

Baixar livros de Ciências da Saúde

Baixar livros de Comunicação

Baixar livros do Conselho Nacional de Educação - CNE

Baixar livros de Defesa civil

Baixar livros de Direito

Baixar livros de Direitos humanos

Baixar livros de Economia

Baixar livros de Economia Doméstica

Baixar livros de Educação

Baixar livros de Educação - Trânsito

Baixar livros de Educação Física

Baixar livros de Engenharia Aeroespacial

Baixar livros de Farmácia

Baixar livros de Filosofia

Baixar livros de Física

Baixar livros de Geociências

Baixar livros de Geografia

Baixar livros de História

Baixar livros de Línguas

Baixar livros de Literatura

Baixar livros de Literatura de Cordel

Baixar livros de Literatura Infantil

Baixar livros de Matemática

Baixar livros de Medicina

Baixar livros de Medicina Veterinária

Baixar livros de Meio Ambiente

Baixar livros de Meteorologia

Baixar Monografias e TCC

Baixar livros Multidisciplinar

Baixar livros de Música

Baixar livros de Psicologia

Baixar livros de Química

Baixar livros de Saúde Coletiva

Baixar livros de Serviço Social

Baixar livros de Sociologia

Baixar livros de Teologia

Baixar livros de Trabalho

Baixar livros de Turismo